Open Access
MATEC Web of Conferences
Volume 362, 2022
XXII International Conference on Computational Mechanics and Modern Applied Software Systems (CMMASS 2021)
Article Number 01030
Number of page(s) 9
Published online 14 September 2022
  1. D.V. Ngoc, H. Marcelo, Ang Jr., Dynamic model identification for industrial robots, Acta Polytech. Hungarica, 6(5), 51 (2009) [Google Scholar]
  2. Y.R. Sturz, L.M. Affolter, R.S. Smith, Parameter identification of the KUKA LBR iiwa robot including constraints on physical feasibility, IFAC PapersOnLine, 50(1), 6863 (2017) [CrossRef] [Google Scholar]
  3. C. Ren, N. Wang, Q. Liu, C.H. Liu, Dynamic force identification problem based on a novel improved Tikhonov regularization, Math. Probl. Eng., 2019, 6095184 (2019) [Google Scholar]
  4. Y.C. Liu, Y.W. Chen, Y.T. Wang, J.R. Chang, A high-order Lie groups scheme for solving the recovery of external force in nonlinear system, Inverse Probl. Sci. Eng., 26(12), 1749 (2018) [CrossRef] [Google Scholar]
  5. S.I. Kabanikhin, O.I. Krivorotko, Identification of biological models described by systems of nonlinear differential equations, J. Inverse III-Posed Prob., 23(5), 519 (2015) [Google Scholar]
  6. J. Chung, A.K. Saibaba, M. Brown, E. Westman, Efficient generalized Golub-Kahan based methods for dynamic inverse problems, Inverse Probl., 34, 024005 (2018) [CrossRef] [Google Scholar]
  7. M.C. D’Autilia, I. Sgura, B. Bozzini, Parameter identification in ODE models with oscillatory dynamics: a Fourier regularization approach, Inverse Probl., 33(12), 124009 (2017) [CrossRef] [Google Scholar]
  8. A.N. Tikhonov, Solution of Incorrectly Formulated Problems and the Regularization Method, Soviet Mathematics, 4(5), 1035 (1963) [Google Scholar]
  9. U. Schmitt, A.K. Louis, C. Wolters, M. Vauhkonen, Efficient algorithms for the regularization of dynamic inverse problems. Inverse Theory, Inverse Probl., 18(3), 659 (2002) [CrossRef] [Google Scholar]
  10. A.V. Kryazhimskij, Yu.S. Osipov, Modelling of a control in a dynamic system, Engineering Cybernetics, 21(2), 38 (1983) [Google Scholar]
  11. N.N. Krasovskii, A.I. Subbotin, Game-theoretical control problems (New York, Springer, 1987) [Google Scholar]
  12. N. Schuster, M. Burger, B. Hahn, Dynamic inverse problems: modelling-regularization- numerics. Preface, Inverse Probl., 34, 040301 (2018) [CrossRef] [Google Scholar]
  13. P.C. Sabatier, Past and future of inverse problems, J. Math. Phys., 41(6), 4082 (2000) [CrossRef] [Google Scholar]
  14. N.N. Subbotina, E.A. Krupennikov, Hamiltonian systems for dynamic control reconstruction problems, Minimax Theory Applications, 5(2), 439 (2020) [Google Scholar]
  15. N.N. Subbotina, E.A. Krupennikov, *-weak approximations of the solution of the dynamic reconstruction problem, Trudi Instituta Matematiki i Mehanici UrO RAN, 27(2), 208 (2021) [Google Scholar]
  16. N.N. Subbotina, E.A. Krupennikov, *-weak solution of the dynamic reconstruction problem, Trudi Instituta im. V.A. Steklova, 315 (2021) [Google Scholar]
  17. R.V. Gamkrelidze, Principles of optimal control theory (Springer, New York, 1978) [Google Scholar]
  18. A.D. Ioffe, V.M. Tihomirov, Theory of extremal problems (North-Holland Publishing Company, New York, 1979) [Google Scholar]
  19. A.M. Letov, Dynamics of flight and control (Nauka, Moscow, 1969) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.