Open Access
MATEC Web Conf.
Volume 361, 2022
Concrete Solutions 2022 – 8th International Conference on Concrete Repair, Durability & Technology
Article Number 04001
Number of page(s) 9
Section Theme 4 - PEPS - Performance Evaluation of Patch Repairs for Historic Structures
Published online 30 June 2022
  1. S. Matthews, CONREPNET: Performance-based approach to the remediation of reinforced concrete structures: Achieving durable repaired concrete structures, J Build Apprais. 3, pp. 6–20 (2007). [CrossRef] [Google Scholar]
  2. A.M. Vaysburd, Holistic system approach to design and implementation of concrete repair, Cement and Concrete Composites. 28, pp. 671–678 (2006). [CrossRef] [Google Scholar]
  3. E. Marie-Victoire, M. Bouichou, T. Congar, R. Blanchard, Concrete cultural heritage in France: inventory and state of conservation, in: Concrete Repair, Rehabilitation and Retrofitting IV: Proceedings of the 4th International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR-4), Leipzig, Germany, (2015). [Google Scholar]
  4. S. Macdonald, A.P. Arato Gonçalves, Conservation Principles for Concrete of Cultural Significance. Principles., Los Angeles: Getty Conservation Institute., (2020). [Google Scholar]
  5. S. Soleimani, P. Ghods, O.B. Isgor, J. Zhang, Modeling the kinetics of corrosion in concrete patch repairs and identification of governing parameters, Cement and Concrete Composites. 32, pp. 360–368 (2010). [CrossRef] [Google Scholar]
  6. G.P. Tilly, J. Jacob, Concrete repairs - performance in service and current practice:, BREPress, (2007). (accessed November 28, 2019). [Google Scholar]
  7. S. Matthews, M. Sarkkinen, J. Morlidge, Achieving durable repaired concrete structures: Adopting a performance-based intervention strategy, IHS BRE Press, (2007). [Google Scholar]
  8. A. Custance-Baker, S. Macdonald, Conserving Concrete Heritage Experts Meeting. The Getty Center, Los Angeles, California, June 9-11, 2014, The Getty Conservation Institute, (2015). [Google Scholar]
  9. A.P.A. Gonçalves, S. Macdonald, É. Marie-Victoire, M. Bouichou, C. Wood, Performance of patch repairs on historic concrete structures: a preliminary assessment, in: MATEC Web of Conferences, EDP Sciences, (2019), p. 07001. [CrossRef] [EDP Sciences] [Google Scholar]
  10. L. Courard, B. Bissonnette, Compatibility performance as a fundamental requirement for the repair of concrete structures with self-compacting repair mortars, Self Compacting Concrete SCC2007. pp. 667–675 (2007). [Google Scholar]
  11. M. Lukovic, G. Ye, K. Van Breugel, Reliable concrete repair: A critical review, in: 14th International Conference Structural Faults and Repair, Edinburgh, Scotland, UK, 3-5 July 2012, (2012). [Google Scholar]
  12. A.M. Vaysburd, P.H. Emmons, Concrete Repair - a Composite System: Philosophy, Engineering and Practice / Betoninstandsetzen - ein zusammenhängendes System, Restoration of Buildings and Monuments. 12, pp. 63–76 (2006). [CrossRef] [Google Scholar]
  13. D.R. Morgan, Compatibility of concrete repair materials and systems, Construction and Building Materials. 10, pp. 57–67 (1996). [CrossRef] [Google Scholar]
  14. P.H. Emmons, A.M. Vaysburd, J.E. McDonald, Rational approach to durable concrete repairs, Concrete International. 15, pp. 40–45 (1993). [Google Scholar]
  15. A.M. Vaysburd, B. Bissonnette, K.F. von Fay, Compatibility issues in design and implementation of concrete repairs and overlays, (2014). [Google Scholar]
  16. A.M. Vaysburd, P.H. Emmons, J.E. McDonald, K.E. Kesner, Performance criteria for concrete repair materials. Phase II, Summary report, p. (1999). [Google Scholar]
  17. L. Courard, B. Bissonnette, A. Garbacz, Fundamental approach for the concept of concrete repair compatibility, in: CRC Press, (2016). (accessed April 1, 2020). [Google Scholar]
  18. B. Bissonnette, L. Courard, A. Garbacz, A. Vaysburd, K. von Fay, B. Robertson, Development of Specifications and Performance Criteria for Surface Preparation Based on Issues Related to Bond Strength, US Bureau of Reclamation, (2016). (accessed April 28, 2020). [Google Scholar]
  19. L. Courard, Parametric study for the creation of the interface between concrete and repair products, Materials and Structures. 33, p. 65 (2000). [CrossRef] [Google Scholar]
  20. L. Czarnecki, Adhesion–A challenge for concrete repair, in: Concrete Repair, Rehabilitation and Retrofitting II, CRC Press, (2008), pp. 361–362. [Google Scholar]
  21. C. Atzeni, L. Massidda, U. Sanna, Dimensional variations, capillary absorption and freeze-thaw resistance of repair mortars admixed with polymers, Cement and Concrete Research. 23, pp. 301–308 (1993). [CrossRef] [Google Scholar]
  22. A. Mallat, Phénomènes de dégradation des ouvrages anciens, techniques et matériaux de réhabilitation, These de doctorat, Châtenay-Malabry, Ecole centrale de Paris, (2008). (accessed April 6, 2022). [Google Scholar]
  23. P.H. Emmons, A.M. Vaysburd, Factors affecting the durability of concrete repair: the contractor’s viewpoint, Construction and Building Materials. 8, pp. 5–16 (1994). [CrossRef] [Google Scholar]
  24. D. Park, S. Park, Y. Seo, T. Noguchi, Water absorption and constraint stress analysis of polymer-modified cement mortar used as a patch repair material, Construction and Building Materials. 28, pp. 819–830 (2012). [Google Scholar]
  25. C. Christodoulou, C.I. Goodier, G.K. Glass, D. Dunne, Incipient anodes in reinforced concrete repairs: A cause or a consequence?, p. (2016). [Google Scholar]
  26. C.A. Eldho, O. Nanayakkar, J. Xia, S. Jones, Performance of Concrete Patch Repairs: From a Durability Point of View, International Conference on Durability of Concrete Structures. p. (2016). [Google Scholar]
  27. M. Raupach, Chloride-induced macrocell corrosion of steel in concrete—theoretical background and practical consequences, Construction and Building Materials. 10, pp. 329–338 (1996). [CrossRef] [Google Scholar]
  28. J.L.S. Ribeiro, Z. Panossian, S.M.S. Selmo, Proposed criterion to assess the electrochemical behavior of carbon steel reinforcements under corrosion in carbonated concrete structures after patch repairs, Construction and Building Materials. 40, pp. 40–49 (2013). [CrossRef] [Google Scholar]
  29. P. Gu, J.J. Beaudoin, P.J. Tumidajski, N.P. Mailvaganam, Electrochemical incompatibility of patches in reinforced concrete, Concrete International. 19, pp. 68–72 (1997). [Google Scholar]
  30. J. Zhang, N.P. Mailvaganam, Corrosion of concrete reinforcement and electrochemical factors in concrete patch repair, Canadian Journal of Civil Engineering. 33, pp. 785–793 (2006). [CrossRef] [Google Scholar]
  31. M.A. Murray, 11 - Patching of deteriorated concrete structures, in: N. Delatte (Ed.), Failure, Distress and Repair of Concrete Structures, Woodhead Publishing, (2009), pp. 282–295. [CrossRef] [Google Scholar]
  32. H.A. Heinemann, Historic Concrete: From Concrete Repair to Concrete Conservation, Technische Universiteit Delft, (2013). (accessed January 3, 2020). [Google Scholar]
  33. H.A. Heinemann, Why historic concrete buildings need holistic surveys, Tailor Made Concrete Structures. pp. 103–110 (2008). [Google Scholar]
  34. A. ICOMOS, I.C. on M. and Sites, The Burra Charter: The Australia ICOMOS Charter for Places of Cultural Significance 2013, (2013). [Google Scholar]
  35. G. Harboe, F. Espinosa de los Monteros, S. Landi, K.C. Normandin, The Cádiz Document: InnovaConcrete Guidelines for Conservation of Concrete Heritage, ICOMOS International, (2021). [Google Scholar]
  36. H.A. Heinemann, H. Zijlstra, R.P.J. van Hees, T.G. Nijland, From concrete repair to concrete conservation: How to preserve the heritage values of historic concrete, Concrete Solutions. 4, p. (2012). [Google Scholar]
  37. S. Macdonald, 20th-Century Heritage: Recognition, Protection and Practical Challenges, Heritage at Risk. pp. 223–229 (2003). [Google Scholar]
  38. Venice Charter, International charter for the conservation and restoration of monuments and sites, in: IInd International Congress of Architects and Technicians of Historic Monuments, Venice, Venice, (1964), pp. 25–31. [Google Scholar]
  39. I. Committee, ICOMOS Charter—Principles for the analysis, conservation and structural restoration of architectural heritage, in: Proceedings of the ICOMOS 14th General Assembly and Scientific Symposium, Victoria Falls, Zimbabwe, (2003). [Google Scholar]
  40. Madrid – New Delhi Document – ICOMOS ISC on 20th Century, p. (n.d.). (accessed April 1, 2022). [Google Scholar]
  41. BS EN 16853, Conservation of cultural heritage. Conservation process. Decision making, planning and implementation, (2017). [Google Scholar]
  42. BS EN 16096, Conservation of cultural property. Condition survey and report of built cultural heritage, CEN, (2012). [Google Scholar]
  43. ICOMOS, The Nara document on authenticity, p. (1994). [Google Scholar]
  44. J.M. Valença, C.A.F.P. de Almeida, J.L.M. Botas, E.N.B.S. Júlio, Patch Restoration Method: A new concept for concrete heritage, Construction and Building Materials. 101, pp. 643–651 (2015). [CrossRef] [Google Scholar]
  45. S. Qian, J. Zhang, D. Qu, Theoretical and experimental study of microcell and macrocell corrosion in patch repairs of concrete structures, Cement and Concrete Composites. 28, pp. 685–695 (2006). [CrossRef] [Google Scholar]
  46. C. Andrade, I.R. Maribona, S. Feliu, J.A. González, S. Feliu, The effect of macrocells between active and passive areas of steel reinforcements, Corrosion Science. 33, pp. 237–249 (1992). [CrossRef] [Google Scholar]
  47. M.S. Ali, E. Leyne, M. Saifuzzaman, M.S. Mirza, An experimental study of electrochemical incompatibility between repaired patch concrete and existing old concrete, Construction and Building Materials. 174, pp. 159–172 (2018). [CrossRef] [Google Scholar]
  48. D.P. Barkey, Corrosion of steel reinforcement in concrete adjacent to surface repairs, Materials Journal. 101, pp. 266–272 (2004). [Google Scholar]
  49. P. Castro, E. Pazini, C. Andrade, C. Alonso, Macrocell activity in slightly chloride-contaminated concrete induced by reinforcement primers, Corrosion. 59, pp. 535–546 (2003). [CrossRef] [Google Scholar]
  50. M. Farzad, S.F. Fancy, A. Azizinamini, K. Lau, Effect of concrete moisture on macrocell development in repair of reinforced concrete substructure with UHPC, in: NACE—International Corrosion Conference Series, Nashville, TN, (2019), pp. 24–28. [Google Scholar]
  51. A.M. Vaysburd, P.H. Emmons, How to make today’s repairs durable for tomorrow—corrosion protection in concrete repair, Construction and Building Materials. 14, pp. 189–197 (2000). [CrossRef] [Google Scholar]
  52. D. Cusson, T. Hoogeveen, S. Qian, Field performance monitoring and evaluation of concrete repair systems on a highway bridge, in: 5th Structural Specialty Conference Of The Canadian Society For Civil Engineering., Saskatoon, (2004), pp. 1–10. [Google Scholar]
  53. NF EN 1504, Products and Systems for the Protection and Repair of Concrete Structures- Definitions- Requirements- Quality Control and Evaluation of Conformity- Parts 1 to 10, European Committee for Standardization, (2005). [Google Scholar]
  54. A.C.I. Committee 546, ACI 546.3R-14: Guide to Materials Selection for Concrete Repair, American Concrete Institute, (2014). [Google Scholar]
  55. A.C.I. Committee 546, ACI 546R-14: Guide to Concrete Repair, American Concrete Institute, (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.