Open Access
Issue |
MATEC Web Conf.
Volume 358, 2022
3rd International Symposium on Mechanics, Structures and Materials Science (MSMS 2022)
|
|
---|---|---|
Article Number | 01054 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/matecconf/202235801054 | |
Published online | 19 May 2022 |
- Lee, Han. Current opinion in medium manganese steel[J]. Materials Science and Technology, 2015, 31(7): 843. [CrossRef] [Google Scholar]
- D.Z. Zhang. Research on Microstructure-Properties and Marine Corrosion Behavior of 690MPa Grade Medium-Mn Steel for Offshore Platform[D]. Shenyang: Northeastern University, 2016. [Google Scholar]
- W.X. Song. Metal Science (Second Edition) [M]. Beijing: Metallurgical Industry Press, 2004. [Google Scholar]
- M. Lei. Study of Microstructure and Mechanical Properties of V-alloyed Medium Mn Steel[D]. Beijing: Beijing Jiaotong University, 2019. [Google Scholar]
- M. Niikura, J.W. Morris. Thermal processing of ferritic 5Mn steel for toughness at cryogenic temperatures[J]. Metallurgical Transactions A, 1980, 11(9): 1531-1540. [CrossRef] [Google Scholar]
- Y.T. Li, B.R. Hou. Corrosion Law of Steel in Shallow Sea Petroleum Development Area of Shengli Oilfield[J]. Studia Marina Sinica, 2006(47): 101-108. [Google Scholar]
- K.M.A. Hossain, S.M. Easa, M. Lachemi. Evaluation of the effect of marine salts on urban built infrastructure[J]. Building and Environment, 2009, 44(4): 713-722. [CrossRef] [Google Scholar]
- L. Li, X.L. Xu, F.F. Ai, et al. Effect of Technology and Microstructure on Corrosion Behavior of Bridge Steels in Simulated Ocean Splash Zone Environment[J]. Corrosion & Protection, 2013, 34(06): 503-506. [Google Scholar]
- B.R. Hou, D. Xifang, L.C. Shui. Corrosion behaviour of steel in the seawater-air-sea transition interface zone[J]. Oceanologia et Limnologia Sinica, 1995(05): 514-519. [Google Scholar]
- X.L. Cui, Z.H. Ma, L. Zhang, et al. Analysis of lowalloy steel rust layer in real sea splash zone (abstract)[J]. Corrosion Science and Protection Technology, 1995(03): 253-254. [Google Scholar]
- X.R. Zhu. Research progress of rust in marine environment[J]. Total Corrosion Control, 1998(02): 24-27. [Google Scholar]
- K.V.S. Ramana, S. Kaliappan, N. Ramanathan, et al. Characterization of rust phases formed on low carbon steel exposed to natural marine environment of Chennai harbour-South India[J]. Materials and Corrosion, 2007, 58(11): 873-880. [CrossRef] [Google Scholar]
- T. Ishikawa, K. Takeuchi, K. Kandori, et al. Transformation of γ-FeOOH to α-FeOOH in acidic solutions containing metal ions[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2005, 266(3): 155-159. [CrossRef] [Google Scholar]
- Z. Liu, X. Lian, T. Liu, et al. Effects of rare earth elements on corrosion behaviors of low carbon steels and weathering steels[J]. Materials and Corrosion, 2020, 71(2): 258-266. [CrossRef] [Google Scholar]
- A. Tarek, F.X. Guo, S. Simon, et al. Development of a Cr-Ni-V-N Medium Manganese Steel with Balanced Mechanical and Corrosion Properties[J]. Metals, 2019, 9(6): 705. [CrossRef] [Google Scholar]
- L.C. Feng, Y.Q. He, B. Qiao, et al. Corrosion and Protection of Metal and Alloy in Marine Environment[J]. Hot Working Technology, 2013, 42(24): 13-17. [Google Scholar]
- W.W. Peng, W.D. Zeng, W.Q. Yan, et al. Effect of tempering process on microstructure and toughness of Aermet100 ultrahigh strength steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(06): 58-61. [Google Scholar]
- P. Montoya, I. Díaz, N. Granizo, et al. An study on accelerated corrosion testing of weathering steel[J]. Materials Chemistry and Physics, 2013(142): 220-228. [Google Scholar]
- H. Luo, X.G. Li, C.F. Dong. Research on Atmosphere Exposure in Tropical Marine and Accelerated Corrosion Test of 304 Stainless Steel[J]. Journal of Chinese Society for Corrosion and Protection, 2013, 33(03): 193-198. [Google Scholar]
- H.P. Wu. Effects of Vanadium and Titanium on the Microstructure and Properites of As-cast Medium Manganese Steel[J]. Foundry Equipment & Technology, 2011(6): 12-13. [Google Scholar]
- J.B. Deng. Application and Research Progress of Vanadium in Metal lurgy[J]. Ferro-Alloys, 2011, 42(2): 45-48. [Google Scholar]
- S.Z. Wei, L.J. Xu, J.H. Zhu, et al. Effect of Carbon and Vanadium Content on Microstructure and Mechanical Properties of High Vanadium High Speed Steel[J]. Journal of Iron and Steel Research, 2005, 17(5): 6. [Google Scholar]
- X.Q. Cha, W.J. Hui, Q.L. Yong, et al. Effect of Vanadium on the Fatigue Properties of Microalloyed Medium-Carbon Steels[J]. Acta Metal lurgica Sinica, 2007, 43(7): 719-723. [Google Scholar]
- Y.J. Ma, Y. Wang. Analysis of Wear Resistance of High Carbon and High Vanadium High Speed Steel and High Chromium Cast Iron[J]. China High-Tech Enterprises, 2007(4): 101. [Google Scholar]
- Z.Z. Yuan, S. Chou, Y. Kuang. Countermeasure of Improving High Manganese Steel Casting Metallurgical Quality[J]. Foundry Technology, 2003(05): 380-382. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.