Open Access
Issue
MATEC Web Conf.
Volume 358, 2022
3rd International Symposium on Mechanics, Structures and Materials Science (MSMS 2022)
Article Number 01050
Number of page(s) 4
DOI https://doi.org/10.1051/matecconf/202235801050
Published online 19 May 2022
  1. Zeng, R., et al., Progress and Challenge for Magnesium Alloys as Biomaterials. Advanced Engineering Materials, 2008. 10(8): p. B3-B14. [CrossRef] [Google Scholar]
  2. Puleo, D.A. and W.W. Huh, Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells. Journal of Applied Biomaterials, 1995. 6(2): p. 109-116. [CrossRef] [Google Scholar]
  3. Witte, F., et al., Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 2008. 12(5-6): p. 63-72. [CrossRef] [Google Scholar]
  4. X.N. Gu, N. Li, Y.F. Zheng, et al. In vitro degradation performance and biological response of a Mg–Zn–Zr alloy[J]. Materials Science and Engineering: B, 2011, 176(20):1778-1784. [CrossRef] [Google Scholar]
  5. HORNBERGER H, VIRTANEN S, BOCCACCINI A R. Biomedical coatings on magnesium alloys—A review[J]. Acta Biomaterialia, 2012, 8(7): 2442−2455. [CrossRef] [Google Scholar]
  6. Hua Shuai et al., Preparation and corrosion resistance of hydroxyapatite coatings on magnesium alloys by electrochemical deposition. Functional Materials, 2017. 48(11): 11216-11220. [Google Scholar]
  7. Sheng, M., et al., Ultrasonic irradiation and its application for improving the corrosion resistance of phosphate coatings on aluminum alloys. Ultrasonics Sonochemistry, 2010. 17(1): p. 21-25. [CrossRef] [Google Scholar]
  8. I. Tudela, Y. Zhang, M. Pal, I. Kerr, T.J. Mason, A.J. Cobley, Ultrasound-assisted electrodeposition of nickel: effect of ultrasonic power on the characteristics of thin coatings, Surf. Coat. Technol. 264 (2015) 49–59. [CrossRef] [Google Scholar]
  9. Y.L. Yang, Y.D. Wang, Y. Ren, C.S. He, J.N. Deng, J. Nan, J.G. Chen, L. Zuo, Singlewalled carbon nanotube-reinforced copper composite coatings prepared by electrodeposition under ultrasonic field, 62, 2008, pp. 47–50. [Google Scholar]
  10. I. Tudela, Y. Zhang, M. Pal, I. Kerr, A.J. Cobley, Ultrasound-assisted electrodeposition of composite coatings with particles, Surf. Coat. Technol. 259 (2014) 363–373. [CrossRef] [Google Scholar]
  11. J. Liu, L. Yang, Z. Song, C. Xu, Microstructures and capacitance performance of MnO2 films fabricated by ultrasonic-assisted electrodeposition,Appl.Surf.Sci.478(2019)94–102. [Google Scholar]
  12. Li, T., et al., Effects of ultrasonic treatment and current density on the properties of hydroxyapatite coating via electrodeposition and its in vitro biomineralization behavior. Materials Science and Engineering: C, 2019. 105: p. 110062. [CrossRef] [Google Scholar]
  13. T. Iwamoto, Y. Hieda, Y. Kogai, Effect of hydroxyapatite surface morphology on cell adhesion, Mater. Sci. Eng. C Mater. Biol. Appl. 69 (2016) 1263–1267. [CrossRef] [Google Scholar]
  14. Fathyunes, L. and J. Khalil-Allafi, Characterization and corrosion behavior of graphene oxidehydroxyapatite composite coating applied by ultrasound-assisted pulse electrodeposition. Ceramics International, 2017. 43(16): p. 13885-13894. [CrossRef] [Google Scholar]
  15. M. Manoj, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Core–shell hydroxyapatite/Mg nanostructures: surfactant free facile synthesis, characterization and their in vitro cell viability studies against leukaemia cancer cells (K562), RSC Adv. 5(2015) 48705–48711. [CrossRef] [Google Scholar]
  16. M.R. Etminanfar, J. Khalil-Allafi, On the electrodeposition of Ca-P coatings onnitinol alloy: a comparison between different surface modification methods, J.Mater. Eng. Perform. 25 (2016) 466–473. (20) [CrossRef] [Google Scholar]
  17. Lin, D. and X. Wang, Electrodeposition of hydroxyapatite coating on Co Ni Cr Mo substrate in dilute solution. Surface and Coatings Technology, 2010. 204(20): p. 3205-3213. [CrossRef] [Google Scholar]
  18. D. Gopi, E. Shinyjoy, A. Karthika, S. Nithiya, L. Kavitha, D. Rajeswari, T. Tang,Single walled carbon nanotubes reinforced mineralized hydroxyapatite composite coatings on titanium for improved biocompatible implant applications, RSC Adv. 5(2015) 36766–36778. [CrossRef] [Google Scholar]
  19. F. Marashi-Najafi, J. Khalil-Allafi, M.R. Etminanfar, Biocompatibility of hydroxyapatite coatings deposited by pulse electrodeposition technique on the Nitinol superelastic alloy, Mater. Sci. Eng. C 76 (2017) 278–286. [CrossRef] [Google Scholar]
  20. Yi Yuejun. Study on preparation of Hydroxyapatite coating on Medical magnesium alloy [D]. Central South University,2012. [Google Scholar]
  21. L. Yan, Y. Xiang, J. Yu, Y. Wang, W. Cui, Fabrication of antibacterial and antiwear hydroxyapatite coatings via in situ chitosan-mediated pulse electrochemical deposition, ACS Appl. Mater. Interfaces 9 (5) (2017) 5023–5030. [Google Scholar]
  22. I. Tudela, Y. Zhang, M. Pal, I. Kerr, A.J. Cobley, Ultrasound-assisted electrodeposition of composite coatings with particles, Surface & Coatings Technology 259 (2014) 363–373. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.