Open Access
Issue |
MATEC Web Conf.
Volume 358, 2022
3rd International Symposium on Mechanics, Structures and Materials Science (MSMS 2022)
|
|
---|---|---|
Article Number | 01028 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/matecconf/202235801028 | |
Published online | 19 May 2022 |
- A.K. Gupta, D.K. Paliwal, P. Bajaj, Acrylic precursors for carbon fibers, J. Macromol. Sci. R. M. C. 31 (1991) 1-89. [Google Scholar]
- K. Sen, S.H. Bahrmi, P. Bajaj, High performance acrylic fibers, J. Macromol. Sci. R. M. C. 36 (1996) 1-76. [CrossRef] [Google Scholar]
- P. Bajaj, A.K. Roopanwal, Thermal stabilization of acrylic precursors for the production of carbon fibers: an overview, J. Macromol. Sci. R. M. C. 37 (1996) 97-147. [Google Scholar]
- G.H. Olive, S. Olive, The chemistry of carbon fiber formation from polyacrylonitrile, Adv. Polym. Sci. 51 (1983) 1-60. [CrossRef] [Google Scholar]
- W.J. Howard. The glass temperatures of polyacrylonitrile and acrylonitrile-vinyl acetate copolymers, J. Appl. Polym. Sci. 5 (1961) 303-307. [CrossRef] [Google Scholar]
- M.M. Colemanand, G.T. Sivy, Fourier transform IR studies of the degradation of polyacrylonitrile copolymers-I: Introduction and comparative rates of the degradation of three copolymers below 200°C and under reduced pressure, Carbon 19 (1981) 123-126. [Google Scholar]
- G.T. Sivy, M.M. Coleman, Fourier transform IR studies of the degradation of polyacrylonitrile copolymers-II: Acrylonitrile/methacrylic acid copolymers, Carbon 19 (1981) 127-131. [Google Scholar]
- M.M. Coleman, G.T. Sivy, Fourier transform IR studies of the degradation of polyacrylonitrile copolymers-III: Acrylonitrile/vinyl acetate copolymers, Carbon 19 (1981) 133-135. [Google Scholar]
- G.T. Sivy, M.M. Coleman, Fourier transform IR studies of the degradation of polyacrylonitrile copolymers-IV: acrylonitrile/acrylamide copolymers, Carbon 19 (1981) 137-139. [Google Scholar]
- J.S. Tsai, C.H. Lin, Effect of comonomer composition on the properties of polyacrylonitrile precursor and resulting carbon fiber, J. Appl. Polym. Sci. 43 (1991) 679-685. [CrossRef] [Google Scholar]
- A. Maity, M. Biswas, Kinetics and mechanism of the K2CrO4-NaAsO2 redox-initiated aqueous polymerization of acrylonitrile, J. Appl. Polym. Sci. 96 (2005) 276-280. [CrossRef] [Google Scholar]
- P. Bajaj, D.K. Paliwal, A.K. Gupta, Acrylonitrileacrylic acids copolymers. 1. Synthesis and characterization, J. Appl. Polym. Sci. 49 (1993) 823-833. [CrossRef] [Google Scholar]
- A.K. Gupta, D.K. Paliwal, P. Bajaj, Effect of the nature and mole fraction of acidic comonomer on the stabilization of polyacrylonitrile, J. Appl. Polym. Sci. 59 (1996) 1819-1826. [CrossRef] [Google Scholar]
- J.R. Ebdon, T.N. Huckerby, T.C. Hunter, Freeradical aqueous slurry polymerizations of acrylonitrile: 1. End-groups and other minor structures in polyacrylonitriles initiated by ammonium persulfate/sodium metabisulfite, Polymer 35 (1994)250-256. [Google Scholar]
- J.R. Ebdon, T.N. Huckerby, T.C. Hunter, Freeradical aqueous slurry polymerizations of acrylonitrile: 2. End-groups and other minor structures in polyacrylonitriles initiated by potassium persulfate/sodium bisulfite, Polymer 35 (1994) 4659-4664. [Google Scholar]
- Y.Q. Zhao, C.G. Wang, Y.X. Wang, B. Zhu, Aqueous deposited copolymerization of acrylonitrile and itaconic acid, J. Appl. Polym. Sci. 111 (2009) 3163-3169. [CrossRef] [Google Scholar]
- Y.Q. Zhao, C.G. Wang, M.J. Yu, C.S. Cui, Q,F. Wang, B. Zhu, Study in monomer reactivity ratios of acrylonitrile/itaconic acid in aqueous deposited copolymerization system initiated by ammonium persulfate, J. Polym Res. 16 (2009) 437-442. [Google Scholar]
- C.S. Cui, C.G. Wang, Y.Q. Zhao. Acrylonitrile/ammonium itaconate aqueous deposited copolymerization, J. Appl. Polym. Sci. 102 (2006) 904-908. [CrossRef] [Google Scholar]
- C.S. Cui, C.G. Wang, Y.Q. Zhao. Monomer reactivity ratios for acrylonitrile-ammonium itaconate during aqueous-deposited copolymerization initiated by ammonium persulfate, J. Appl. Polym. Sci. 100 (2005) 4645-4648. [Google Scholar]
- J.P. Liu, X.M. Yang, X.F. Hu, L. Hu, Recent research progress on the synthesis and application of water soluble azo initiators, Chemical Reagents, 33 (2001) 317-323. [Google Scholar]
- S.S. Wang, Y.S. Chen, Q. Ouyang, J. Huang, J.X. Yang, H. Liu, Y.F. Liu, Effect of azo initiators on structure and thermal stabilization behavior of PAN and its precursor, China Synthetic Fiber Industry, 40 (2017) 11-16. [Google Scholar]
- Z.H. Xie, Y.S. Chen, Q. Ouyang, X.F. Wang, J.X. Yang, J. Huang, Study on acrylonitrile solution polymerization initiated by azobiscyanopentanoic acid, China Synthetic Fiber Industry, 38 (2015) 13-17. [Google Scholar]
- J.P. Bell, J.H. Dumbleton, Changes in the structure of wet-spun acrylic fibers during processing, Text. Res. J. 41 (1971) 196-203. [Google Scholar]
- G. Hinrichsen, Structural changes of drawn polyacrylonitrile during annealing, J. Polym. Sci. Polym. Symp. 38 (1972) 303-319. [CrossRef] [Google Scholar]
- A.K. Gupta, R.P. Singhal, Effect of copolymerization and heat treatment on the structure and X-ray diffraction of polyacrylonitrile, J. Polym. Sci. Polym. Phys. 21 (1983) 2243-2262. [CrossRef] [Google Scholar]
- P. Bajaj, K. Sen, S.H. Bahrmi, Solution polymerization of acrylonitrile with vinyl acids in dimethylformamide, J. Appl. Polym. Sci. 59 (1996) 1539-1550. [CrossRef] [Google Scholar]
- Y.Q. Zhao, C.G. Wang, Y.J. Bai, G.W. Chen, M. Jing, B. Zhu, Property changes of powdery [Google Scholar]
- A.K. Gupta, D.K. Paliwal, P. Bajaj, Effect of an acidic comonomer on thermooxidative stabilization of polyacrylonitrile, J. Appl. Polym. Sci. 58 (1995) 1161-1174. [CrossRef] [Google Scholar]
- W.N. Turner, F.C. Johnson, The pyrolysis of acrylic fiber in inert atmosphere. I. Reactions up to 400°C, J. Appl. Polym. Sci. 13 (1969) 2073-2084. [Google Scholar]
- Y. Tsuchiya, K. Sumi, Thermal decomposition products of polyacrylonitrile, J. Appl. Polym. Sci. 21 (1977) 975-980. [CrossRef] [Google Scholar]
- O.P. Bahl, R.B. Mathur, K.D. Kundra, Structure of PAN fibres and its relationship to resulting carbon fibre properties, Fibre Sci. Technol. 15 (1981) 147-151. [Google Scholar]
- T.H. Ko, P. Chiranairadul, H.Y. Ting, C.H. Lin, The effect of modification on structure and dynamic mechanical behavior during the processing of acrylic fiber to stabilized fiber, J. Appl. Polym. Sci. 37 (1989) 541-552. [CrossRef] [Google Scholar]
- M.J. Yu, Y.J. Bai, C.G. Wang, Y. Xu, P.Z. Guo, A new method for the evaluation of stabilization index of polyacrylonitrile fibers, Mater. Lett. 61 (2007) 2292-2294. [CrossRef] [Google Scholar]
- P. Bajaj, M. Padmanaban, Copolymerization of Acrylonitrile with 3-chloro, 2-hydroxy-propyl acrylate and methacrylate, J. Polym. Sci. Polym. Chem. 21 (1983) 2261-2270. [CrossRef] [Google Scholar]
- T. Usami, T. Itoh, H. Ohtani, S. Tsuge, Structural study of polyacrylonitrile fibers during oxidative thermal degradation by pyrolysis-gas chromatography, solid-state carbon-13 NMR, and Fourier-transform infrared spectroscopy, Macromolecules 23 (1990) 2460-2465. [Google Scholar]
- S.B. Deng, R.B. Bai, J.P. Chen, Behaviors and mechanisms of copper adsorption on hydrolysed polyacrylonitrile fibers, J. Colloid Interf. Sci. 260 (2003) 265-272. [CrossRef] [Google Scholar]
- M. Minagawa, K. Miyano, M. Takahashi, Infrared characteristic absorption bands of highly isotactic poly(acrylonitrile), Macromolecules 21 (1998) 2387-2391. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.