Open Access
Issue |
MATEC Web Conf.
Volume 357, 2022
25th Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS 2020)
|
|
---|---|---|
Article Number | 08004 | |
Number of page(s) | 10 | |
Section | Theoretical and Applied Mathematics in Engineering | |
DOI | https://doi.org/10.1051/matecconf/202235708004 | |
Published online | 22 June 2022 |
- International Energy Agency: Electricity Information 2019, https://www.iea.org/reports/electricity-information-2019_- access 01.07.2020. [Google Scholar]
- P. Levi, T. Vass, H. Mandova, A. Gouy Tracking Industry https://www.iea.org/reports/tracking-industry-2020 (2020) - access 24.07.2020. [Google Scholar]
- A.A.G. Bruzzone, D. Anghinolfi, M. Paolucci, F. Tonelli Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Annals - Manufacturing Technology, 61(1), 459–462 (2012). [CrossRef] [Google Scholar]
- K. Fang, N. Uhan, F. Zhao, J.W. Sutherland A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. J Manuf Syst 30(4), 234–240 (2011). [CrossRef] [Google Scholar]
- S. Ashok Peak-load management in steel plants. Appl Energy, 83(5), 413–424 (2006). [CrossRef] [Google Scholar]
- F. Shrouf, J. Ordieres-Meré, A. Garcia-Sánchez, M. Ortega-Mier Optimizing the production scheduling of a single machine to minimize total energy consumption costs. J Clean Prod 67, 197–207 (2014). [CrossRef] [Google Scholar]
- International Renewable Energy Agency: Renewable Energy Options for the Industry Sector: Global and Regional Potential until 2030, https://irena.org/-/media/Files/IRENA/Agency/Articles/2016/Nov/IRENA_RE_Potential_for_Industry_BP_2015.pdf?la=en&hash=1214D8FDBD507297FC61073DACE78F8F31927663 - access 28.07.2020. [Google Scholar]
- N. Preston, A. Maroufmashat, H. Riaz, S. Barbouti, U. Mukherjee, P. Tang, J. Wang, E. Haghi, A. Elkamel, M. Fowler How can the integration of renewable energy and power-to-gas benefit industrial facilities? From techno-economic, policy, and environmental assessment. Int J Hydrog Energy 45(51), 26559–26573 (2020). [CrossRef] [Google Scholar]
- P. Durcansky, R. Nosek Modelling and application of Stirling engine with renewable sources in electricity production. Structure and Environment, 10(4), 386–389 (2018). [CrossRef] [Google Scholar]
- C. McMillan, R. Boardman, M. McKellar, P. Sabharwall, M. Ruth, S. Bragg-Sitton Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions. Technical report, Joint Institute for Strategic Energy Analysis, https://www.nrel.gov/docs/fy17osti/66763.pdf -_access 28.07.2020. [Google Scholar]
- J. Paralikas, K. Salonitis, G. Chryssolouris Energy efficiency of cold roll forming process. Int J AdvManufTechnol, 66, 1271–1284 (2013). [Google Scholar]
- P. Albertelli, M. Strano Tube bending machine modelling for assessing the energy savings of electric drives technology. J Clean Prod 154, 83–93 (2017). [CrossRef] [Google Scholar]
- N. Diaz, E. Redelsheimer, D. Dornfeld, Energy consumption characterization and reduction strategies for milling machine tool use. In: Hesselbach, J., Herrmann, C. (Eds) 18th CIRP International Conference on Life Cycle Engineering.Glocalized Solutions for Sustainability in Manufacturing, pp. 263–267. Springer, Berlin, Heidelberg (2011). [CrossRef] [Google Scholar]
- J. Campillo, F. Wallin, D. Torstensson, I. Vassileva Energy demand model design for forecasting electricity consumption and simulating demand response scenarios in Sweden. In: IntConf on Applied Energy ICAE 2012, Suzhou, China (2012). [Google Scholar]
- C. Peñasco, P. del Rio, D. Romero-Jordán Gas and electricity demand in Spanish manufacturing industries: analysis using homogenous and heterogenous estimators. Utilities Policy 45, 45–60 (2017). [CrossRef] [Google Scholar]
- G. Bölük, A.A. Koç Electricity demand of manufacturing sector in Turkey: A translog cost approach. Energy Economics 32(3), 609–615 (2010). [CrossRef] [Google Scholar]
- F. Boulaire, A. Higgins, G. Foliente, C. McNamara Statistical modelling of district-level residential electricity use in NSW, Australia. Sustain Sci, 9(1), 77–88 (2014). [CrossRef] [Google Scholar]
- J. Munkhammar, J. Rydén J. Widen On a probability distribution model combining household power consumption, electric home-charging and photovoltaic power production. Appl Energy 142, 135–143 (2015). [CrossRef] [Google Scholar]
- J.V. Paatero, P.D. Lund A model for generating household electricity load profiles. Int J Energy Res 30(5), 273–290 (2006). [CrossRef] [Google Scholar]
- C.A. Babu, S. Ashok Peak load management in electrolytic process industries. IEEE Transactions on Power Systems 23(2), 399–405 (2008). [CrossRef] [Google Scholar]
- L. Suganthi, A.A. Samuel Energy models for demand forecasting - A review. Renew SustEnerg Rev 16(2), 1223–1240 (2012). [CrossRef] [Google Scholar]
- R. Singh, B.C. Pal, R.A. Jabr Statistical representation of distribution system loads using Guassian mixture model. IEEE Trans Power Syst 25(1), 29–37 (2010). [CrossRef] [Google Scholar]
- J. Munkhammar, J. Rydén, J. Widen Characterizing probability density distributions for household electricity load profiles from high-resolution electricity use data. Appl Energy 135, 382–390 (2014). [CrossRef] [Google Scholar]
- J.O. Okeniyi, A.A. Atayero, S.I. Popoola, E.T. Okeniyi, G.M. Alalade Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University, Data in Brief 17, 1082–1090 (2018). [CrossRef] [Google Scholar]
- G.W. Irwin, W. Monteith, W.C. Beattie Statistical electricity demand modelling from consumer billing data. IEE Proceedings C (Generation, Transmission and Distribution) 133(6), 328–335 (1986). [CrossRef] [Google Scholar]
- A. Seppälä Statistical distribution of customer load profiles. In: Proceedings 1995 IntConf on Energy Management and Power Delivery EMPD '95 (Singapore), 2, 696701. IEEE (1995). [Google Scholar]
- E. Carpaneto, G. Chicco Probability distributions of the aggregated residential load. In: IntConf on Probabilistic Methods Applied to Power Systems (Stockholm, Sweden), pp. 1–6. IEEE (2006). [Google Scholar]
- F. Gonzales-Longatt, J. Rueda, I. Erlich, W. Villa, D. Bogdanov Mean variance mapping optimization for the identification of Gaussian mixture model: test case. In: 6th IEEE IntConf Intelligent Systems (Sofia), pp. 158–163. IEEE (2012). [Google Scholar]
- H. Akaike A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723 (1974). [CrossRef] [Google Scholar]
- G. Schwarz Estimating the dimension of a model. Annals of Statistics 6(2), 461–464 (1978). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.