Open Access
Issue
MATEC Web Conf.
Volume 357, 2022
25th Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS 2020)
Article Number 06001
Number of page(s) 12
Section Modelling of Structural Materials, Composities and Nanomaterials
DOI https://doi.org/10.1051/matecconf/202235706001
Published online 22 June 2022
  1. J. Kaleta Magnetic materials SMART. Construction, production, properties testing, application. Publishing House of the Wroclaw University of Technology (2013). [Google Scholar]
  2. A.K. Bastola, M Paudel, L. Lin 3D Printed Magnetorheological Elastomers. Proc. of the ASME Conf. on Smart Mat. Adaptive Str. and Int. Sys. (Snowbird) vol 1, SMASIS 2017-3732 1–5 (2017). [Google Scholar]
  3. H.M.N. Hadzir, Z.A. Norfaidayu, M.S.M. Sabri, M.-H. Abu-Bakar Investigation of damping coefficient for magnetorheological elastomer. MATEC Web of Conf., 217, 02003-1-7 (2018). [Google Scholar]
  4. V. Kumar, D.-J. Lee Iron particle and anisotropic effects on mechanical properties of magneto-sensitive elastomers 2017 J. of Mag. and Mag. Mat., 41, 105–112 (2017). [CrossRef] [Google Scholar]
  5. J.Y. Lee, V. Kumar, D.J. Lee Compressive properties of magnetorheological elastomer with different magnetic fields and types of filler. Pol. for Adv. Techn, 30, 1106–1115 (2019). [CrossRef] [Google Scholar]
  6. S.S. Sun, Y. Chen, J. Yang, T.F. Tian, H.X. Deng, W.H. Li, H. Du, G. Alici The development of an adaptive tuned magnetorheological elastomer absorber working in squeeze mode. Smart Mat. and Str, 23, 1–8 (2014). [Google Scholar]
  7. H. Deng, X. Gong Application of magnetorheological elastomer to vibration absorber Comm. in Nonlinear Sci. and Numerical Sim., 13, 1938–1947 (2008) [CrossRef] [Google Scholar]
  8. G.J. Liao, X.L. Gong, C.J. Kang, S.H. Xuan The design of an active-adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance. Smart Mat. and Str., 20, 1–10 (2011). [Google Scholar]
  9. N. Hoang, N. Zhang, H. Du An adaptive tunable vibration absorber using a new magnetorheological elastomer for vehicular powertrain transient vibration reduction. Smart Mat. and Str., 24, 2036–2044 (2010). [Google Scholar]
  10. T. Mitsumata, S. Ohori Magnetic Polyurethane Elastomers With Wide Range Modulation of Elasticity. Pol. Chem., 2, 1063–1067 (2011). [CrossRef] [Google Scholar]
  11. M. Kukla Modeling selected mechanical properties of magnetorheological elastomers, IOP Conf. Series: Mat. Sci. and Eng., 776, 012079, 1–7 (2020). [Google Scholar]
  12. M. Kukla, A. Fierek, M. Berdychowski, M. Koñczak The study of mechanical properties of magnetorheological elastomers under compressive stress. IOP Conf. Series: Mat. Sci. and Eng., 776, 012079, 1–8 (2020) [Google Scholar]
  13. M. Kukla, J. Górecki, I. Malujda, K. Talaska, P. Tarkowski The Determination of Mechanical Properties of Magnetorheological Elastomers (MREs). Procedia Eng., 177, 324–330 (2017). [CrossRef] [Google Scholar]
  14. M. Kukla Shaping the material properties of magnetorheological elastomers in mechanical engineering. Doctor's thesis, Poznan: Poznan University of Technology (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.