Open Access
Issue |
MATEC Web Conf.
Volume 357, 2022
25th Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS 2020)
|
|
---|---|---|
Article Number | 05007 | |
Number of page(s) | 10 | |
Section | Experimental Mechanics, Identification and Validation | |
DOI | https://doi.org/10.1051/matecconf/202235705007 | |
Published online | 22 June 2022 |
- M. Barczewski, O. Mysiukiewicz, J. Szulc, A. Kloziñski Poly(lactic acid) green composites filled with linseed cake as an agricultural waste filler. Influence of oil content within the filler on the rheological behavior. Journal of Applied Polymer Science 136, 24, 47651 (2019). [CrossRef] [Google Scholar]
- D. Czarnecka-Komorowska, K. Mencel Modification of polyamide 6 and polyoxymethylene with [3-(2-aminoethyl) amino] propyl-heptaisobutyl-polysilsesquioxane nanoparticles. Przemysl Chemiczny 93, 3, 392–396 (2014). [Google Scholar]
- D. Czarnecka-Komorowska, T. Sterzynski, H. Maciejewski, M. Dutkiewicz The effect of polyhedral oligomeric silsesquioxane (POSS) on morphology and mechanical properties of polyoxymethylene (POM). Composites Theory and Practice 12, 4, 232236 (2012). [Google Scholar]
- K. Gawdziñska, S. Paszkiewicz, E. Piesowicz, K. Bryll, I. Irska, A. Lapis, E. Sobolewska, A. Kochmañska, W. Slaczka Preparation and characterization of hybrid nanocomposites for dental applications. Applied Sciences 9, 7, 1381 (2019). [CrossRef] [Google Scholar]
- K.T. Lau, P.Y. Hung, M.H. Zhu, D. Hui Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering 136, 222–233 (2018). [CrossRef] [Google Scholar]
- M.L. Sanyang, M. Jawaid (eds.) Bio-based Polymers and Nanocomposites. Preparation, Processing, Properties & Performance, Springer Nature Switzerland AG, Switzerland (2019). [Google Scholar]
- M. Macko, A. Mroziñski, J. Flizikowski Design and utility of specialist comminution set-up for plastics and organic materials. In: Conference Proceedings: International Mechanical Engineering Congress and Exposition, ASME 2011, 3, 397–402. IMECE, USA (2011). [CrossRef] [Google Scholar]
- W.C. Li, H.F. Tse, L. Fok Plastic waste in the marine environment: a review of sources, occurrence and effects. Science of the Total Environment 566-567, 333–349 (2016). [CrossRef] [Google Scholar]
- J.W. Rhim, H.M. Park, C.S. Ha Bio-nanocomposites for food packaging applications. Progress in Polymer Science 38, 10-11, 1629–1652 (2013). [CrossRef] [Google Scholar]
- Y. Yangxiang, R. Boom, B. Irion, D.-J. Heerden, P. Kuiper Recycling of composite materials. Chemical Engineering and Processing: Process Intensification 51, 53–68 (2012). [CrossRef] [Google Scholar]
- D. Czarnecka-Komorowska, K. Wiszumirska Sustainability design of plastic packaging for the Circular Economy. Polimery 65, 8–17 (2020). [CrossRef] [Google Scholar]
- W. Urbaniak-Domagala Electrical Properties of Polylactides. In: Conference Proceedings: Journal of Electrostatics, 177–602. Elsevier, Budapest (2013). [Google Scholar]
- J.F. Jenck, F. Agterberg, M.J. Droescher Products and processes for a sustainable chemical industry: a review of achievements and prospects. Green Chemistry 6, 544556 (2004). [CrossRef] [Google Scholar]
- D.L. Kaplan Biopolymers from renewable resources. Springer, Heidelberg (1998). [Google Scholar]
- K. Kummerer Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chemistry 9, 899–907 (2007). [CrossRef] [Google Scholar]
- Aktualnosci Parlament Europejski Homepage, https://www.europarl.europa.eu/news/pl/headlines/society/20181212STO21610/odpady-z-tworzyw-sztucznych-i-recykling-w-ue-fakty-i-liczby - access 28.07.2020 [Google Scholar]
- F. Shady, D.G. Anderson, R. Langer Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Advanced Drug Delivery Reviews 107, 367–392 (2016). [CrossRef] [Google Scholar]
- Y.B. Luo, W.D. Li, X.L. Wang, D.Y. Xu, Y.Z. Wang Preparation and properties of nanocomposites based on poly (lactic acid) and functionalized TiO2. ActaMaterialia 57, 11, 3182–3191 (2009). [Google Scholar]
- F.M. Michael, M. Khalid, R. Walvekar, C.T. Ratnam, S. Ramarad, H. Siddiqui, M.E. Hoque Effect of nanofillers on the physico-mechanical properties of load bearing bone implants. Materials Science and Engineering: C 67, 792–806 (2016). [CrossRef] [Google Scholar]
- R. Auras, B. Harte, S. Selke An overview of polylactides as packaging materials. Macromolecular Bioscience 4, 835–864 (2004). [CrossRef] [Google Scholar]
- D. Garlotta A literature review of poly(lactic acid). Journal of Polymers and the Environment 9, 63–84 (2001). [CrossRef] [Google Scholar]
- M. Jalbrzykowski, S. Obidzifiski, L. Minarowski Effect of selected parameters of injection moulding on the stability of mechanical characteristics of polylactide parts aged in Sorensen fluid environment. Przemysl Chemiczny 96(9), 1869–1872 (2017). [Google Scholar]
- Z. Foltynowicz, P. Jakubiak Poli(kwas mlekowy) - biodegradowalny polimer otrzymywany z surowców roslinnych. Polimery 47, 11-12, 769–774 (2002). [CrossRef] [Google Scholar]
- M. Jalbrzykowski, I. Krucifska, J.R. Dabrowski Tests of selected mechanical properties of PLA-PLA type composites. Composites Theory and Practice, 16, 2, 84–89 (2016). [Google Scholar]
- P. Sakiewicz, R. Nowosielski, W. Pilarczyk, K. Golombek, M. Lutyfski Selected properties of the halloysite as a component of Geosynthetic Clay Liners (GCL). Journal of Achivements in Materials and Manufacturing Engineering 48, 2, 177–191 (2011). [Google Scholar]
- I. Legocka, E. Wierzbicka, T.M. Al-Zahari, O. Osawaru Wplyw modyfikowanego haloizytu na strukture, wlasciwosci cieplne i mechaniczne poliamidu 6. Polimery 58, 1, 24–32 (2013). [CrossRef] [Google Scholar]
- P. Sakiewicz, M. Lutyfski, J. Soltys, A. Pytlifski Purification of halloysite by magnetic separation. Physicochemical Problems Mineral Processing 52, 2, 991–1001 (2016). [Google Scholar]
- S. Li, S. McCarthy Influence of crystallinity and stereochemistryon the enzymatic degradation of poly(lactide)s. Macromolecules 32, 4454–4456 (1999). [CrossRef] [Google Scholar]
- A. Szczygielska, J. Kijefiski Zastosowanie haloizytu jako napelniacza do modyfikacji polipropyleny. Czesc I. Charakterystyka haloizytu jako napelniacza. Kompozyty 10, 2, 181–185 (2010). [Google Scholar]
- G. Oliveux, L. Dandy, G.A. Leeke Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Progress in Materials Science 72, 61–99 (2015). [CrossRef] [Google Scholar]
- C.A. Navarro, E.A. Kedzie, Y. Ma, K.H. Michael, S.R. Nutt, T.J. Williams Mechanism and Catalysis of Oxidative Degradation of Fiber-Reinforced Epoxy Composites. Topics in Catalysis 6, 7-8, 704–709 (2018). [CrossRef] [Google Scholar]
- S. Pimenta, S.T. Pinho Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook. Waste Management 31, 2, 378392 (2011). [Google Scholar]
- A. Schindler, D. Harper Polylactide. II. Viscosity-molecular weight relationships and unperturbed chain dimensions. Journal of Polymer Science: Polymer Chemistry 17, 2593 (1979). [CrossRef] [Google Scholar]
- J. Wróblewska-Krepsztul, T. Rydzkowski, I. Michalska-Pozoga, V.K. Thakur Biopolymers for biomedical and pharmaceutical applications: recent advances and overview of alginate electrospinning. Nanomaterials 9, 3, 404 (2019). [CrossRef] [Google Scholar]
- P. Krawiec, L. Rózanski, D. Czarnecka-Komorowska, L. Wargula Evaluation of the Thermal Stability and Surface Characteristics of Thermoplastic Polyurethane V-Belt. Materials 13 7, 1502 (2020). [CrossRef] [Google Scholar]
- O. Mysiukiewicz, M. Barczewski Utilization of linseed cake as a postagricultural functional filler for poly (lactic acid) green composites. Journal of Applied Polymer Science 136, 10, 47152 (2018). [Google Scholar]
- A. Zubkiewicz, A. Szymczyk, S. Paszkiewicz, R. Jedrzejewski, E. Piesowicz, J. Sieminski Ethylene vinyl acetate copolymer/halloysite nanotubes nanocomposites with enhanced mechanical and thermal properties. Journal of Applied Polymer Science 137, 38, 49135 (2020). [CrossRef] [Google Scholar]
- S. Wysocki, K. Kowalczyk, S. Paszkiewicz, P. Figiel, E. Piesowicz Green highly clay-filled polyethylene composites as coating materials for cable industry - a new application route of non-organophilised natural montmorillonites in polymeric materials. Polymers 12, 6, 1399 (2020). [CrossRef] [Google Scholar]
- M. Burzynski, S. Paszkiewicz, E. Piesowicz, I. Irska, K. Dydek, A. Boczkowska, S. Wysocki, J. Sieminski Comparison study of the influence of carbon and halloysite nanotubes on the preparation and rheological behaviour of linear low density polyethylene. Polimery 65, 2, 95–98 (2020). [CrossRef] [Google Scholar]
- I. Irska, S. Paszkiewicz, K. Goracy, A. Linares, T.A. Ezquerra, R. Jedrzejewski, Z. Roslaniec, E. Piesowicz Poly(butylene terephthalate)/polylactic acid based copolyesters and blends: miscibility-structure-property relationship. eXPRESSPolymer Letters 14, 1, 26–47 (2020). [CrossRef] [Google Scholar]
- P. Pietrusiewicz, K. Bloch, M. Nabialek, S. Walters Influence of 1% addition of Nb and W on the relaxation process in classical Fe-based amorphous alloys. ActaPhysicaPolonica A 127, 2, 397–399 (2015). [Google Scholar]
- I. Irska, A. Linares, E. Piesowicz, S. Paszkiewicz, Z. Roslaniec, A. Nogales, T.A. Ezquerra Dielectric Spectroscopy of novel bio-based aliphatic-aromatic block copolymers: Poly(butylene terephthalate)-b-Poly(lactic acid). The European Physical Journal E 42, 8, (2019). [CrossRef] [Google Scholar]
- P. Dunaj, S. Berczyñski, K. Miadlicki, I. Irska, B. Niesterowicz Increasing damping of thin-walled structures using additively manufactured vibration eliminators. Materials 13, 2125 (2020). [CrossRef] [Google Scholar]
- H. Saveyn, P. Eder Kryteria end-of-waste dla odpadów biodegradowalnych poddawanych obróbce biologicznej (kompost i fermentat): Propozycje techniczne. Publications Office of the European Union, Luxembourg (2014). [Google Scholar]
- W. Sikorska, M. Musiol, J. Rydz, M. Kowalczuk, G. Adamus Kompostowanie przemyslowe jako metoda zagospodarowania odpadów z materialów poliestrowych otrzymywanych z surowców odnawialnych. Polimery 11-12, 818–827 (2019). [CrossRef] [Google Scholar]
- J.H. Song, R.J. Murphy, R. Narayan, G.B.H. Davies Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal Society B. Biological Sciences 364, 1526, 2127–2139 (2009). [CrossRef] [Google Scholar]
- A. Höglund, K. Odelius, A.C. Albertsson Crucial Differences in the Hydrolytic Degradation between Industrial Polylactide and Laboratory-Scale Poly(L-lactide). ACS Applied Materials Interfaces 4-5, 2788–2793 (2012). [CrossRef] [Google Scholar]
- J. Rydz, W. Sikorska, M. Kyulavska, D. Christova Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development. Int. J. Mol. Sci. 16, 1, 564–596 (2015). [Google Scholar]
- G. Kale, T. Kijchavengkul, R. Auras, M. Rubino, S.E. Selke, S.P. Singh Compostability of Bioplastic Packaging Materials: An Overview. Macromolecular Bioscience 7, 3, 255–277 (2007). [CrossRef] [Google Scholar]
- T. Ohkita, S.H. Lee Thermal degradation and biodegradability of poly(lactic acid)/corn starch biocomposites. Journal of Applied Polymer Science 100, 4, 3009–3017 (2006). [CrossRef] [Google Scholar]
- H. Urayama, T. Kanamori, Y. Kimura Properties and biodegradability of polymer blends of poly(L-lactide)s with different optical purity of the lactate units. Macromolecular Materials and Engineering 287, 2, 116–121 (2002). [CrossRef] [Google Scholar]
- I. Wojnowska-Baryla, D. Kulikowska, K. Bernat Effect of Bio-Based Products on Waste Management. Sustainability 12, 5, 2088 (2020). [CrossRef] [Google Scholar]
- P. Dacko, J. Rydz, W. Sikorska, M. Sobota, M. Kowalczuk Kompostowanie przemyslowe materialów otrzymanych na bazie polimerów z surowców odnawialnych. ProblemyEkologii 12, 1, 39–42 (2008). [Google Scholar]
- O.F. Solomon, B.S. Gotesman, Zurberechnung der viskositätszahlauseinpunktmessungen. Die MakromolulareChemie 104, 177–184 (1967). [Google Scholar]
- A. Bledzki, S. Spychaj, T. Spychaj Oznaczanie mas czasteczkowych polimerów i ich rozkladu, Politechnika Szczecifska-Wydawnictwo Uczelniane, Szczecin (1981). [Google Scholar]
- M.R. Kasaai Calculation of Mark-Houwink-Sakurada (MHS) equation viscometric constants for chitosan in any solvent-temperature system using experimental reported viscometric constants data. Carbohydrate Polymers 68, 3, 477–488 (2007). [CrossRef] [Google Scholar]
- J. Ahmed, S.K. Varshney Polylactides-Chemistry, Properties and Green Packaging Technology: A Review. International Journal of Food Properties 14, 1, 37–58 (2011). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.