Open Access
Issue
MATEC Web Conf.
Volume 357, 2022
25th Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS 2020)
Article Number 02018
Number of page(s) 9
Section Modelling and Simulation, Structural Optimization
DOI https://doi.org/10.1051/matecconf/202235702018
Published online 22 June 2022
  1. J. Shi, et al. A TPMS-basedmethod for modeling porousscaffolds for bionicbonetissue engineering. ScientificReports, 8, 1, 7395 (2018). [Google Scholar]
  2. C. Fee 3D-printed porousbedstructures, Current Opinion in Chemical Engineering, 18, 10–15 (2017). [CrossRef] [Google Scholar]
  3. I. Maskery, et al., Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Additive Manufacturing, 16, 24–29 (2017). [CrossRef] [Google Scholar]
  4. M. Sychov, L. Lebedev, S.V. Dyachenko, L.A. Nefedova Mechanical properties of energy - absorbing structures with triplyperiodic minimal surface topology. Acta Astronautica, 150, 81–84 (2017). [Google Scholar]
  5. D.L. Chandler, 3-d-graphene-strongest-lightest-materials, 06.01.2017, http://news.mit.edu/2017/3-d-graphene-strongest-lightest-materials-0106 [access 03 07 2020] [Google Scholar]
  6. K. Khan, R. Abu Al-Rub Time Dependent Response of ArchitecturedNeoviusFoams. International Journal of Mechanical Sciences, 126, 106–119 (2017). [CrossRef] [Google Scholar]
  7. K. Monkova, P. Monka, et al. Three Approaches to the GyroidStructureModelling as a Base of Lightweight Component Produced by Additive Technology, DEStechTransactions on Computer Science and Engineering, 10.12783/dtcse/cmsam2017/16361 (2017). [Google Scholar]
  8. P. Krawiec, G. Domek, et al. The application of the optical system ATOS II for rapidprototypingmethods of non-classicalmodels of cogbeltpulleys. MATEC Web of Conferences, 157, 01010 (2018). [CrossRef] [EDP Sciences] [Google Scholar]
  9. E. Lord, A. Mackay Periodic Minimal Surfaces of Cubic Symmetry. Current Science, 85, 346–362 (2003). [Google Scholar]
  10. C.E. Weatherburn Differential Geometry of Three Dimensions, vol. 1, Cambridge University Press (1927). [Google Scholar]
  11. Y. Jung, K. Chu, et al. A Variational Level Set Approach for Surface AreaMinimization of TriplyPeriodicSurfaces, Journal of ComputationalPhysics, 223, 711–730 (2006). [Google Scholar]
  12. https://www.cgal.org/ - access 03.07.2020. [Google Scholar]
  13. D. Wilczyński, I. Malujda, K. Talaśka, R. Długi The study of mechanicalproperties of naturalpolymers in the compactingprocess. Procedia Engineering, 177, 411–418 (2017). [CrossRef] [Google Scholar]
  14. D. Byrne, D. Lacroix, et al., Simulation of tissuedifferentiation in a scaffold as a function of porosity, Young'smodulus and dissolutionrate: Application of mechanobiologicalmodels in tissue engineering. Biomaterials, 28, 5544–5554 (2008). [Google Scholar]
  15. F. Hehl, I. Yakov The Cauchy Relations in Linear Elasticity Theory. Journal of Elasticity, 66, 10.1023/A:1021225230036 (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.