Open Access
Issue
MATEC Web Conf.
Volume 357, 2022
25th Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS 2020)
Article Number 02004
Number of page(s) 14
Section Modelling and Simulation, Structural Optimization
DOI https://doi.org/10.1051/matecconf/202235702004
Published online 22 June 2022
  1. T.J. Janssen Explosive Materials: Classification, Composition and Properties. Nova Science Publishers, Inc., New York (2011). [Google Scholar]
  2. Pat. Ne 5540793 US:. Porous prilled ammonium nitrate (1996). [Google Scholar]
  3. Pat. N° 2118074, CA: Porous prilled ammonium nitrate (2002). [Google Scholar]
  4. Pat. N° 2093727, CA: Hardened porous ammonium nitrate (2004). [Google Scholar]
  5. Pat. N° 2004-256365, JP: Method of manufacturing porous granular ammonium nitrate (2004). [Google Scholar]
  6. Pat. N° 2005-350276, JP: Method for producing porous granular ammonium nitrate (2005). [Google Scholar]
  7. Pat. N° 2221717, CA: Procedure and installation for the manufacture of porous ammonium nitrate (2005). [Google Scholar]
  8. Pat. N° 102093146, CN: Microporous granular ammonium nitrate and preparation methods thereof (2011). [Google Scholar]
  9. Pat. N° 102173968, CN: Production method of porous granular ammonium nitrate (2011). [Google Scholar]
  10. Pat. N° 2452719, RU: Device for production of porous granulated ammonium nitrate and method for production of porous granulated ammonium nitrate (2012). [Google Scholar]
  11. Pat. N° 391973, PL: Method for producing granulated porous ammonium nitrate (2012). [Google Scholar]
  12. Pat. N° 103896695, CN: Microporous pelletal ammonium nitrate and preparation method thereof (2014). [Google Scholar]
  13. Pat. N° 204384319, CN: Device for producing porous ammonium nitrate and industrial ammonium nitrate (2015). [Google Scholar]
  14. Pat. N° 204237724, CN: Recycling device for caked ammonium nitrate during production of porous ammonium nitrate (2015). [Google Scholar]
  15. Pat. N° 104311372, CN: Porous ammonium nitrate production caking ammonium nitrate recycling apparatus and method of use (2016). [Google Scholar]
  16. Pat. N° 106316727 CN: and granular ANFO (ammonium nitrate fuel oil) and preparation method thereof (2017). [Google Scholar]
  17. Pat. N° 2599170, RU: Method of producing porous granulated ammonium nitrate (2016). [Google Scholar]
  18. Pat. N° 2600061, RU: Method of porous granulated ammonium nitrate producing and device for its implementation (2016). [Google Scholar]
  19. Pat. No. 112294 UA (2016). Device for granulation in the suspended layer. [Google Scholar]
  20. Pat. No. 112393 UA (2016). Vortex granulator with utilization of waste gases. [Google Scholar]
  21. Pat. No. 112394 UA (2016). Vortex granulator. [Google Scholar]
  22. Pat. No. 112622 UA (2016). Vortex granulator. [Google Scholar]
  23. Pat. No. 113141 UA (2017). Vortex granulator. [Google Scholar]
  24. G. Martin, W. Barbour Industrial nitrogen compounds and explosives, Chemical Manufacture and Analysis. Watchmaker Publishing, Seaside (2003). [Google Scholar]
  25. N. Kubota Propellants and explosives: thermochemical aspects of combustion. 3rd Edition. Wiley-VCH Verlag & Co., Weinheim (2015). [Google Scholar]
  26. D. Buczkowski, B. Zygmunt Detonation Properties of Mixtures of Ammonium Nitrate Based Fertilizers and Fuels. Central European Journal of Energetic Materials 8, 2, 99–106 (2011). [Google Scholar]
  27. A.E. Artyukhov, V.I. Sklabinskyi Experimental and industrial implementation of porous ammonium nitrate producing process in vortex granulators. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 42–48 (2013). [Google Scholar]
  28. A. Artyukhov, N. Artyukhova Utilization of dust and ammonia from exhaust gases: new solutions for dryers with different types of fluidized bed. Journal of Environmental Health Science and Engineering, 16, 2, 193–204 (2018). [CrossRef] [Google Scholar]
  29. A.E. Artyukhov, V.I. Sklabinskyi Investigation of the temperature field of coolant in the installations for obtaining 3D nanostructured porous surface layer on the granules of ammonium nitrate. Journal of Nano- and Electronic Physics, 9, 1, 01015 (2017). [Google Scholar]
  30. N.A. Artyukhova Multistage finish drying of the N4HNO3 porous granules as a factor for nanoporous structure quality improvement. Journal of Nano- and Electronic Physics 10, 3, 03030 (2018). [Google Scholar]
  31. A.E. Artyukhov, V.K. Obodiak, P.G. Boiko, P.C. Rossi Computer modeling of hydrodynamic and heat-mass transfer processes in the vortex type granulation devices. CEUR Workshop Proceedings, 1844, 33–47 (2017). [Google Scholar]
  32. A.E. Artyukhov, N.O. Artyukhova, A.V. Ivaniia Creation of software for constructive calculation of devices with active hydrodynamics. In: Proceedings of the 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET 2018) 2018-April, pp. 139–142 (2018). [Google Scholar]
  33. A. Artyukhov, N. Artyukhova, A. Ivanii, J. Gabrusenoks Multilayer modified NH4NO3 granules with 3D nanoporous structure: effect of the heat treatment regime on the structure of macro- and mezopores. In: Proc IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF-2017), pp. 315–318 (2017). [CrossRef] [Google Scholar]
  34. A. Artyukhov, J. Gabrusenoks Phase composition and nanoporous structure of core and surface in the modified granules of NH4NO3. Springer Proceedings in Physics, 210, 301–309 (2018). [CrossRef] [Google Scholar]
  35. N. Artyukhova, J. Krmela Nanoporous structure of the ammonium nitrate granules at the final drying: The effect of the dryer operation mode. Journal of Nano- and Electronic Physics, 11, 4, 04006 (2019). [Google Scholar]
  36. A. Artyukhov, N. Artyukhova, J. Krmela, V. Krmelová Complex designing of granulation units with application of computer and software modeling: Case “Vortex granulator”. IOP Conference Series: Materials Science and Engineering, 776, 1, 012016 (2020). [CrossRef] [Google Scholar]
  37. A. Artyukhov, N. Artyukhova, J. Krmela, V. Krmelová Granulation machines with highly turbulized flows: Creation of software complex for technological design. IOP Conference Series: Materials Science and Engineering, 776, 1, 012018 (2020). [CrossRef] [Google Scholar]
  38. A. Artyukhov, N. Artyukhova, A. Ivaniia, R. Galenin Progressive equipment for generation of the porous ammonium nitrate with 3D nanostructure. Proceedings of the 2017 IEEE 7th International Conference on Nanomaterials: Applications and Properties, NAP 2017, 2017-January, 03NE06 (2017). [Google Scholar]
  39. V. Obodiak, N. Artyukhova, A. Artyukhov Calculation of the residence time of dispersed phase in sectioned devices: Theoretical basics and software implementation. Lecture Notes in Mechanical Engineering, 813–820 (2020). [CrossRef] [Google Scholar]
  40. N.O. Artyukhova Morphological features of the nanoporous structure in the ammonium nitrate granules at the final drying stage in multistage devices. Journal of Nano- and Electronic Physics, 12, 4, 04036 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.