Open Access
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
Article Number 03007
Number of page(s) 11
Section Computing Methods and Computer Application
Published online 12 January 2022
  1. Liu D Y, Ye P L, Hu J, et al. Aviation gas turbine engine stability design and evaluation technology[M]. Beijing: Aviation Industry Press, 2004. [Google Scholar]
  2. Oakes W C, Law P B, and Fagan J R, et al. High Speed Centrifugal Compressor Surge Initiation Characterization[R]. The 32nd Joint Propulsion Conference Exhibit, 1996. A9636851, AIAA Paper 96~2577. [Google Scholar]
  3. Day I. Stall Inception in Axial Flow Compressors [J]. Journal of Turbomachinery, 1991, 115: 1-9. [Google Scholar]
  4. McDougall N M, Cumpsty N A, Hynes T P. Stall Inception in Axial Compressors [J]. Journal of Turbomachinery, 1990, 112(1): 116‒123. [CrossRef] [Google Scholar]
  5. Tryfonidis, M., Etchvers, O., Paduano, J. D., Epstein, A. H., and Hendricks, G. J., 1995. “Prestall behavior of several high-speed compressors”. Journal of Turbomachinery, 117, Jan., pp. 62–80. [CrossRef] [Google Scholar]
  6. Bright M M, Qammar H K, Weigl H J, et al. Stall Precursor Identification in High-Speed Compressor Stages Using Chaotic Time Series Analysis Methods[C]// Asme International Gas Turbine & Aeroengine Congress & Exhibition. American Society of Mechanical Engineers, 1996. [Google Scholar]
  7. Hoss B, Leinhos D, Fottner L. Stall Inception in the Compressor System of a Turbofan Engine[J]. Journal of Turbomachinery, 2000, 122(1). [Google Scholar]
  8. Tahara N, Nakajima T, Kurosaki M, et al. Active stall control with practicable stall prediction system using auto-correlation coefficient[C]// Aiaa/ASME/SAE/see Joint Propulsion Conference & Exhibit. 2001. [Google Scholar]
  9. Dremin I.M., Furletov V.I., Ivanov O.V., et al., Precursors of stall and surge processes in gas turbines revealed by wavelet analysis[J]. Control Engineering Practice, 2002, 10(6):599–604. [CrossRef] [Google Scholar]
  10. Li Y, Li Y H, Wu Y, Initial detection of stall symptoms of an axial compressor based on analysis of variance[J]. Aeronautical Computing Technology, 2005, 35(1):104–105. [Google Scholar]
  11. Li C Z, Xiong B, Wu C. Compressor surge detection based on short-term energy[J]. Measurement and Control Technology, 2010, 29(3):92-93. [Google Scholar]
  12. Liu J J, Su S M, Sun Z H, Zhai X B. A compressor stall precursor identification method based on modal wave theory[J]. Journal of Aeronautical Dynamics, 2017,32(09):2283-2290. [Google Scholar]
  13. Lei J, Fang J F, Lei X B. Aero-engine surge detection method based on fluctuating pressure change rate[J]. Gas Turbine Test and Research, 2019,32(02):1-6. [Google Scholar]
  14. Li J C, Tong Z T, Nie C Q, Lin Feng. Analysis of pre-stall precursor detection based on cross-correlation analysis[J]. Acta Aeronautica Sinica, 2013, 34(01):28-36. [Google Scholar]
  15. Liu Z X, Wang S L. The application of spatial Fourier analysis in the identification of centrifugal impeller stall signal[J]. Journal of Tianjin University (Natural Science and Engineering Technology Edition), 2019, 52(04):353-360. [Google Scholar]
  16. Li J C, Liu Y, Du J, et al. Automatic Stability Control Using Tip Air Injection in a Multi-Stage Axial Compressor[J]. Aerospace Science and Technology, 2020, 98: 1-12. [Google Scholar]
  17. Zhang Z, Yang Q H. Target recognition method based on BP neural network and improved D-S evidence theory[J]. Computer Applications and Software, 2018, 35(03):151-156. [Google Scholar]
  18. Frank-Oliver, Methling, Horst, et al. The Pre-Stall Behavior of a 4-Stage Transonic Compressor and Stall Monitoring Based on Artificial Neural Networks[J]. International Journal of Rotating Machinery, 2004. [Google Scholar]
  19. Lin P. Research on early warning of axial compressor stall under distortion conditions based on deterministic learning theory[D]. South China University of Technology, 2017. [Google Scholar]
  20. Qiu X H, Li J, Qiu W H. An axial compressor stall surge prediction device based on changes in frequency characteristics [P]. China: ZL201921850522.5, 2020-10-30. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.