Open Access
Issue
MATEC Web Conf.
Volume 353, 2021
4th International Conference on Advances in Materials, Machinery, Electronics (AMME 2021)
Article Number 01022
Number of page(s) 9
DOI https://doi.org/10.1051/matecconf/202135301022
Published online 20 December 2021
  1. Lithium-ion battery, how does it work? https://www.youtube.com/watch?v=VxMM4g2Sk8 U [Google Scholar]
  2. Nitta N, Wu F, Lee J T, et al. Li-ion battery materials: present and future. Materials today, 2015, 18(5): 252–264. [CrossRef] [Google Scholar]
  3. Thomas C.E. Fuel cell and battery electric vehicles compared. International Journal of Hydrogen Energy. 2009, 34 (15), 6005-6020. [CrossRef] [Google Scholar]
  4. Kim HJ, Krishna TNV, Zeb K, et al. A comprehensive review of Li-ion battery materials and their recycling techniques. Electronics, 2020, 9(7): 1161. [CrossRef] [Google Scholar]
  5. Bai, P.; Bazant, M.Z. Charge transfer kinetics at the solid-solid interface in porous electrodes. Nat. Commun. 2014, 5, 1–7. [Google Scholar]
  6. Son, M.Y.; Hong, Y.J.; Lee, J.K.; Chan Kang, Y. One-pot synthesis of Fe2O3 yolk-shell particles with two, three, and four shells for application as an anode material in lithium-ion batteries. Nanoscale 2013, 5, 11592–11597. [CrossRef] [Google Scholar]
  7. Heiskanen S K, Kim J, Lucht B L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule, 2019, 3(10): 2322–2333. [CrossRef] [Google Scholar]
  8. Xu, J; Deshpande, Rutooj; Pan, J; Cheng, Y; Battaglia, V. Electrode Side Reactions, Capacity Loss and Mechanical Degradation in Lithium-Ion Batteries. Journal of The Electrochemical Society. 2015, 162. 2026-2035. [Google Scholar]
  9. Stankovich, S.; Dikin, D.A.; Dommett, G.H.B. et al. Graphene-based composite materials. Nature 2006, 442, 282–286. [CrossRef] [Google Scholar]
  10. Liang, M.; Zhi, L. Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 2009, 19, 5871–5878. [CrossRef] [Google Scholar]
  11. Brownson, D.A.C.; Kampouris, D.K.; Banks, C.E. An overview of graphene in energy production and storage applications. J. Power Sources 2011, 196, 4873–4885. [CrossRef] [Google Scholar]
  12. M. B. Bazbouz. Lithium-ion Battery Materials (Anode, Cathode and separator). 2021. [Google Scholar]
  13. Doughty D H, Roth E P. A general discussion of Li ion battery safety. The Electrochemical Society Interface, 2012, 21(2): 37. [Google Scholar]
  14. He Y B, Liu M, Huang Z D, et al. Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. Journal of Power Sources, 2013, 239: 269-276. 15. M.-S. Song, et al. J. Mater. Chem. 2014, A2(3), 631. [CrossRef] [Google Scholar]
  15. Reddy, A.L.M.; Gowda, S.R.; Shaijumon, M.M.; Ajayan, P.M. Hybrid nanostructures for energy storage applications. Adv. Mater. 2012, 24, 5045– 5064. [CrossRef] [Google Scholar]
  16. Mekonnen, Y.; Sundararajan, A.; Sarwat, A.I. A review of cathode and anode materials for lithium-ion batteries. In Proceedings of the SoutheastCon 2016, Norfolk, VA, USA, 30 March–3 April 2016. [Google Scholar]
  17. Kong, L.L.; Wang, L.; Ni, Z.C. et al. Lithium– Magnesium Alloy as a Stable Anode for Lithium– Sulfur Battery. Adv. Funct. Mater. 2019, 29, 1808756. [CrossRef] [Google Scholar]
  18. Kasavajjula, U.; Wang, C.; Appleby, A.J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 29, 1808756. [Google Scholar]
  19. Park, M.H.; Cho, Y.; Kim, K. et al. Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Angew. Chem. Int. Ed. 2011, 50, 9647–9650. [CrossRef] [Google Scholar]
  20. Flynn, G.; Palaniappan, K.; Sheehan, M.; Kennedy, T.; Ryan, K.M. Solution synthesis of lead seeded germanium nanowires and branched nanowire networks and their application as Li-ion battery anodes. Nanotechnology 2017, 28(25): 255603. [CrossRef] [Google Scholar]
  21. Kim, C.H.; Im, H.S.; Cho, Y.J. et al. High-yield gas-phase laser photolysis synthesis of germanium nanocrystals for high-performance photodetectors and lithium-ion batteries. J. Phys. Chem. C 2012, 50, 26190–26196. [Google Scholar]
  22. Scrosati, B. History of lithium batteries. J. Solid State Electrochem. 2011, 15, 1623–1630. [CrossRef] [Google Scholar]
  23. Blomgren, G.E. The Development and Future of Lithium-Ion Batteries. J. Electrochem.Soc. 2017, 164, 1. [Google Scholar]
  24. Hwang J, Do K, Ahn H. Highly conductive 3D structural carbon network-encapsulated Ni-rich LiNi0.8Co0.1Mn0.1O2 as depolarized and passivated cathode for lithium-ion batteries. Chemical Engineering Journal, 2021, 406: 126813 [CrossRef] [Google Scholar]
  25. Is Li-Ion the Solution for the Electric Vehicle? https://batteryuniversity.com/learn/archive/is_li_ion_the_solution_for_the_electric_vehicle [Google Scholar]
  26. Zheng, Q.; Yamada, Y.; Shang, R. et al. A cyclic phosphate-based battery electrolyte for high voltage and safe operation. Nat. Energy 2020, 5, 291–298. [CrossRef] [Google Scholar]
  27. Li, T.; Li, L.; Cao, Y.L. et al. Reversible three-electron redox behaviors of FeF3 nanocrystals as high-capacity cathode-active materials for Li-Ion batteries. J. Phys. Chem. C 2010, 114, 3190–3195. [CrossRef] [Google Scholar]
  28. Chen, C.; Xu, X.; Chen, S. et al. The preparation and characterization of iron fluorides polymorphs FeF3·0.33H2O and β-FeF3·3H2Oas cathode materials for lithium-ion batteries. Mater. Res. Bull. 2015, 64, 187–193. [CrossRef] [Google Scholar]
  29. Ma, Y.; Huang, A.; Zhou, H.; Ji, S.; Zhang, S.; Li, R.; Yao, H.; Cao, X.; Jin, P. Template-free formation of various V2O5 hierarchical structures as cathode materials for lithium-ion batteries. J. Mater. Chem. 2017, 5, 6522–6531. [CrossRef] [Google Scholar]
  30. Lai Q, Sun Y, Wang T, et al. How to design hydrogen storage materials? Fundamentals, synthesis, and storage tanks. Advanced Sustainable Systems, 2019, 3(9): 1900043. [CrossRef] [Google Scholar]
  31. Smith A, Burns J, Trussler S, Dahn J. Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries. J Electrochem Soc 2010, 157(2): A196-202 [CrossRef] [Google Scholar]
  32. Qaisar, S M; Dallet, D; Benjamin, S; et al. Power efficient analog to digital conversion for the Li-ion battery voltage monitoring and measurement. IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2013: 1522-1525. [Google Scholar]
  33. Shah, M S A S; Park, A R; Rauf, A et al. Highly interdigitated and porous architected ternary composite of SnS2, gC3N4, and reduced graphene oxide (rGO) as high-performance lithium-ion battery anodes. RSC Advances, 2017, 7(6): 3125–3135. [CrossRef] [Google Scholar]
  34. Mei, B., Munteshari, O., Lau, J., Dunn, B., & Pilon, L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. Journal of Physical Chemistry C, 2018, 122: 194-206. [CrossRef] [Google Scholar]
  35. Zubi G, Dufo-López R, Carvalho M, et al. The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 2018, 89, 292-308. [CrossRef] [Google Scholar]
  36. Doughty D H, Roth E P. A general discussion of Li ion battery safety. The Electrochemical Society Interface, 2012, 21(2): 37. [Google Scholar]
  37. He Y B, Li B, Liu M, et al. Gassing in Li4Ti5O12-based batteries and its remedy. Scientific reports, 2012, 2(1): 1–9. [Google Scholar]
  38. Zaghib K, Dontigny M, Guerfi A, et al. Safe and fast-charging Li-ion battery with long shelf life for power applications. Journal of power sources, 2011, 196(8): 3949–3954. [CrossRef] [Google Scholar]
  39. R. Yazami, et al. New Trends in Intercalation Compounds for Energy Storage and Conversion: Proceedings of the International Symposium. The Electrochemical Society, vol. 2003, 2003, p. 317. [Google Scholar]
  40. Du Pasquier A, Plitz I, Menocal S, et al. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. Journal of power sources, 2003, 115(1): 171–178. [CrossRef] [Google Scholar]
  41. Liu, N., Lu, Z., Zhao, J. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. 2014, Nature Nanotech 9, 187–192. [CrossRef] [Google Scholar]
  42. Yu, Y.; Cui, C.; Qian, W. et al. Carbon nanotube production and application in energy storage. Asia-Pac. J. Chem. Eng. 2013, 8, 234–245. [CrossRef] [Google Scholar]
  43. Ohzuku, T. Electrochemistry and Structural Chemistry of LiNiO2(R3m) for 4 Volt Secondary Lithium Cells. Electrochem. Soc. 1993, 147, 1862. [CrossRef] [Google Scholar]
  44. Intro to Electrochemical Impedance Spectroscopy (EIS) of Batteries. https://www.youtube.com/watch?v=xaimI9w-egQ [Google Scholar]
  45. Whittingham, M.S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.