Open Access
Issue
MATEC Web Conf.
Volume 352, 2021
EDES 2021 - Extraordinary Dynamic Experiments and Simulations 2021
Article Number 00011
Number of page(s) 7
DOI https://doi.org/10.1051/matecconf/202135200011
Published online 03 December 2021
  1. N. P. Louat, B. B. Rath, Plastic Flow and the Griffith Fracture Criterion, Acta Metallurgica, Vol. 35, No. 12, pp. 2921–2927, 1987, https://doi.org/10.1016/0001-6160(87)90291-4 [Google Scholar]
  2. J. Weertman, Fracture Mechanics: A Unified View For Griffith-Irwin-Orowan Cracks, Acta Metallurgica, Vol. 26, No. 11, 1978, pp. 1731–1738, https://doi.org/10.1016/0001-6160(78)90084-6 [Google Scholar]
  3. K. Huanga, T. Shimadab, N. Ozaki et al., A Unified and Universal Griffith-Based Criterion for Brittle Fracture, International Journal of Solids and Structures, Vol. 128, No. 1, 2017, pp. 67–72, https://doi.org/10.1016/j.ijsolstr.2017.08.018 [Google Scholar]
  4. N.P. Andrianopoulos, P.S. Theocaris, The Griffith-Orowan Fracture Theory Revisited: The T-Criterion, International Journal of Mechanical Sciences, Vol. 27, No. 11-12, 1985, pp. 793–801, https://doi.org/10.1016/0020-7403(85)90010-4 [Google Scholar]
  5. N.P. Andrianopoulos, P.S. Theocaris, The Griffith-Orowan Fracture Theory Revisited: The T-Criterion, International Journal of Mechanical Sciences, Vol. 27, No. 11-12, 1985, pp. 793–801, https://doi.org/10.1016/0020-7403(85)90010-4 [Google Scholar]
  6. S. N. Bandyopadhyay, Orowan Mechanism for Abrupt Localized Flow And Fracture Initiation in Metals Ahead of a Yielding Notch, Engineering Fracture Mechanics, Vol. 16, No. 6, 1982, pp. 871–887, https://doi.org/10.1016/0013-7944(82)90011-X [Google Scholar]
  7. P. Paris, F. Erdogan, A Critical Analysis of Crack Propagation Laws, J. Basic Eng., Vol. 85, No. 4, 1963, pp. 528–533, https://doi.org/10.1115Z1.3656900 [Google Scholar]
  8. H. Tada, P.C. Paris, G.R. Irwin, The Stress Analysis of Cracks Handbook, New York, 2000, ISBN-10: 0791801535, DOI: https://doi.org/10.1115Z1.801535 [Google Scholar]
  9. F. Erdogan, Fracture Mechanics, International Journal of Solid and Structures, 37, 2000., pp. 171–183. [Google Scholar]
  10. G. R. Irwins, Linear Fracture Mechanics, Fracture Transition, and Fracture Control, Engineering Fracture Mechanics, 1968, Vol. 1, pp. 241–257., https://doi.org/10.1016/0013-7944(68)90001-5 [Google Scholar]
  11. G.R. Irwin, Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate, Journal of Applied Mechanics, Vol. 24, 1957, pp. 361–364, [Google Scholar]
  12. A.R. Torabi, B. Shahbazian, Notch Tip Plastic Zone Determination by Extending Irwin’s Model, Theoretical and Applied Fracture Mechanics, Vol. 108, 2020, https://doi.org/10.1016/j.tafmec.2020.102643 [Google Scholar]
  13. H.M. Westergaard, Bearing Pressures and Cracks, Bearing Pressures Through a Slightly Waved Surface or Trough a Nearly Flat Part of a Cylinder, and Related Problems of Cracks, Journal of Applied Mechanics, Vol.6, pp. 49–53. [Google Scholar]
  14. E. Czoboly, B. Csizmazia, I. Havas, Experimental Determination of Plastic Zones, Material Sciences, Vol. 32, No. 1, 1996., pp. 87–98. [Google Scholar]
  15. F. Gillemot, E. Czoboly, I. Havas, Fracture Mechanics Applications of Absorbed Specific Fracture Energy: Notch and Unnotched Specimens, Theoretical and Applied Fracture Mechanics, Vol. 4., 1985, pp. 39–45, https://doi.org/10.1016/0167-8442(85)90041-2 [Google Scholar]
  16. L.F. Gillemot, Criterion of Crack Initiation and Spreading, Engineering Fracture Mechanics, vol. 8, 1976, pp. 239–253., DOI: 10.1016/0013-7944(76)90089-8 [Google Scholar]
  17. C. Bacon, J. Farm and J.L. Lataillade: Dynamic Fracture Toughness Determined from Load-point Displacement, Experimental Mechanics, 1994. September pp.217–223. [Google Scholar]
  18. Fengchun Jiang, Kenneth S. Vecchio: Hopkinson Bar Loaded Fracture, Experimental Technique: A Critical Review of Dynamic Fracture Toughness Tests Applied Mechanics Reviews NOVEMBER 2009, Vol. 62 / 060802-1 Copyright © 2009 by ASME Downloaded 05 Aug 2009 to 137.110.118.115. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm [Google Scholar]
  19. Ireland, D. R., 1976, “Critical Review of Instrumented Impact Testing,” Dynamic Fracture Toughness International Conference, The Welding Institute of American Society for Metals, London, Effects Technology, Inc., Technical Report No. 79-55. [Google Scholar]
  20. Server, W. L.: “Impact Three-Point Bend Testing for Notched and Precracked Specimens,” J. Test. Eval., 6, 1978, pp. 29–34. [Google Scholar]
  21. Dietmar Gross, Thomas Seelig: Fracture Mechanics With an Introduction to Micromechanics Third Edition 2018 Springer pp. 221–237 [Google Scholar]
  22. Jianfei Li et al.: A new method for measuring the dynamic fracture toughness under blast loads using an arc-edge rectangle with edge notches, Theoretical and Applied Fracture Mechanics 112 (2021) 102891 10.1016/j.tafmec.2020.102891, https://www.sciencedirect.com/science/article/pii/S0167844220304663 [Google Scholar]
  23. A. Mubeen, K. Kim, Cylindrical Specimens for K1c of Rocks, International Journal of Mechanical Sciences, No. 11/12, pp. 711–715, 1985, https://doi.org/10.1016/0020-7403(85)90003-7, https://www.sciencedirect.com/science/article/abs/pii/0020740385900037 [Google Scholar]
  24. Sia Nasser, Jon B. Isaacs, John E. Starrett: Hopkinson Technique for Dynamic Recovery Experiments, Proceedings: Mathematical and Physical Sciences, Vol. 435. Issue 1894 (Nov. 8, 1991) pp. 371–391. [Google Scholar]
  25. Sia Nemat-Nasser: Variational Methods in the Mechanics of Solids Proceedings of the IUTAM Symposium on Variational Methods in the Mechanics of Solids held at Northwestern University, Evanston, Illinois, U.S.A. 11-13 September 1978 pp.60–66 [Google Scholar]
  26. Sia Nemat-Nasser: Mechanics Today, Volume 5 Pergamon mechanics today series 1980 ISBN 0-08-024249-9 [Google Scholar]
  27. Mechanical Testing and Evaluation was published in 2000 as Volume 8 of the ASM Handbook. The Volume was prepared under the direction of the ASM Handbook Committee. pp 939–955 [Google Scholar]
  28. D. Cormie, G. Mays, S. Smith, Blast Effects on Buildings, Third edition, London, 2020, ISBN 978-0-7277-6147-7 [Google Scholar]
  29. H. K. Kutter, C. Fairhurst, On the Fracture Process in Blasting International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Vol. 8, pp. 181–202., 1971., https://doi.org/10.1016/0148-9062(71)90018-0 [Google Scholar]
  30. L. Davison, Shock Wave and High-Pressure Phenomena, Berlin Heidelberg, 2008, ISBN 978-3-540-74568-6, DOI 10.1007/978-3-540-74569-3 [Google Scholar]
  31. V. Karlos, G. Solomos, “Calculation of Blast Loads for Application to Structural Components,” Publication Office of the European Union, 2013 [Google Scholar]
  32. L. Figuli, S. Jangl, D. Papan, “Modelling and Testing of Blast Effect On the Structures,” IOP Conf. Series: Earth and Environmental Science 44, 2016. [Google Scholar]
  33. L. Figuli, C. Bedon, Z. Zvakova et al. Procedia Eng. 199, pp. 2463–2469 (2017) [Google Scholar]
  34. Z. Zvakova, L. Figuli, V. Kavicky, et al. Transport Means - Proceedings of the International Conference, pp. 1100–1104 (2016), [Google Scholar]
  35. David Cormie, Geoff Mays, Peter Smith: Blast Effects on Buildings, Third edition, pp. 31–45 ICE Publishing London 2020. ISBN 978-0-7277-6147-7 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.