Open Access
MATEC Web Conf.
Volume 351, 2021
20th International Conference Diagnostics of Machines and Vehicles “Hybrid Multimedia Mobile Stage”
Article Number 01001
Number of page(s) 10
Section Selected Diagnostic Problems of Hybrid Multimedia Mobile Stages
Published online 06 December 2021
  1. O. Cordon, Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases (World Scientific, 2001) [CrossRef] [Google Scholar]
  2. F. Herrera, M. Lozano, J.L. Verdegay, Generating fuzzy rules from examples using genetic algorithms, Fuzzy Logic and Soft Computing, pp. 11-20 (1995) [CrossRef] [Google Scholar]
  3. F. Herrera, M. Lozano, J.L. Verdegay, A learning process for fuzzy control rules using genetic algorithms, Fuzzy Set Syst, Vol. 100 Issue 1-3, pp. 143-158 (1998) [CrossRef] [Google Scholar]
  4. O. Cordon, F. Herrera, L. Sanchez, Evolutionary Learning Processes for Data Analysis in Electrical Engineering Applications (John Wiley & Sons Ltd. 1997) [Google Scholar]
  5. O. Cordon, M.J. del Jesus, F. Herrera, M. Lozano, MOGUL: A methodology to obtain genetic fuzzy rule‐based systems under the iterative rule learning approach, Int J Intell Syst, Vol. 14 Issue 11, pp. 1123-1153 (1999) [CrossRef] [Google Scholar]
  6. A. Gonzblez, P. Raúl, SLAVE: A genetic learning system based on an iterative approach, IEEE T Fuzzy Syst, Vol. 7 Issue 2, pp. 176-191 (1999). [CrossRef] [Google Scholar]
  7. O. Cordon, F. Herrera, Hybridizing genetic algorithms with sharing scheme and evolution strategies for designing approximate fuzzy rule-based systems, Fuzzy Set Syst, Vol. 118 Issue 2, pp. 235-255 (2001) [CrossRef] [Google Scholar]
  8. M. Pająk, Fuzzy modelling of temperature difference in 200 MW power unit condenser using genetic fuzzy systems, Control Cybern, Vol. 37 Issue 3, pp. 565-583 (2008) [Google Scholar]
  9. M. Pająk, Genetic Fuzzy system of power units maintenance schedules generation, Journal of Intelligent and Fuzzy Systems, Vol. 28 Issue 4, pp. 1577-1589 (2015) [CrossRef] [Google Scholar]
  10. T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms (Oxford Scholarship Online, 2020) [Google Scholar]
  11. Padmavathi Kora, Priyanka Yadlapalli, Crossover Operators in Genetic Algorithms: A Review, Int J Comput Appl, Vol. 162 Issue 10, pp. 34-36 (2017) [Google Scholar]
  12. A. González, F. Herrera, Multi-stage genetic fuzzy systems based on the iterative rule learning approach, Mathware & Soft Computing, Vol. 4 Issue 3, pp. 233-249 (1997) [Google Scholar]
  13. Ł. Muślewski, M. Pająk, B. Landowski, B. Żółtowski, A method for determining the usability potential of ship steam boilers, Pol Marit Res, Vol. 92 Issue 4, pp. 105-112 (2016) [CrossRef] [Google Scholar]
  14. M. Pająk, Identification of the operating parameters of a complex technical system important from the operational potential point of view, P I Mech Eng I-J Sys, Vol. 232 Issue 1, pp. 62-78 (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.