Open Access
Issue |
MATEC Web Conf.
Volume 348, 2021
The 2nd International Network of Biomaterials and Engineering Science (INBES’2021)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/matecconf/202134801002 | |
Published online | 17 November 2021 |
- A. L. I. Oliveira, “Estimation of software project effort with support vector regression,” Neurocomputing, vol. 69, no. 13-15, pp. 1749–1753, Aug. 2006, doi: 10/fr8fhx. [CrossRef] [Google Scholar]
- A. Zakrani and A. Idri, “Applying radial basis function neural networks based on fuzzy clustering to estimate web applications effort,” Int. Rev. Comput. Softw., vol. 5, pp. 516–524, 2010. [Google Scholar]
- A. Najm, A. Zakrani, and A. Marzak, “Decision Trees Based Software Development Effort Estimation: A Systematic Mapping Study,” in 2019 International Conference of Computer Science and Renewable Energies (ICCSRE), Agadir, Morocco, Jul. 2019, pp. 1–6, doi: 10/gf7785. [Google Scholar]
- A. Najm, A. Zakrani, and A. Marzak, “Systematic Review Study of Decision Trees based Software Development Effort Estimation,” Int. J. Adv. Comput. Sci. Appl. IJACSA, vol. 11, no. 7, Art. no. 7, 34/31 2020, doi: 10/ghfkn3. [Google Scholar]
- Q. Liu, J. Xiao, and H. Zhu, “Feature selection for software effort estimation with localized neighborhood mutual information,” Clust. Comput., vol. 22, no. 3, pp. 6953–6961, May 2019, doi: 10/gjn3wv. [CrossRef] [Google Scholar]
- L. N. de Castro and J. Timmis, “An artificial immune network for multimodal function optimization,” in Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), May 2002, vol. 1, pp. 699–704 vol.1, doi: 10/c7mfqm. [CrossRef] [Google Scholar]
- J. Yang and V. Honavar, “Feature Subset Selection Using a Genetic Algorithm,” in Feature Extraction, Construction and Selection: A Data Mining Perspective, H. Liu and H. Motoda, Eds. Boston, MA: Springer US, 1998, pp. 117–136. [CrossRef] [Google Scholar]
- A. Zakrani, M. Hain, and A. Idri, “Improving Software Development effort estimating using Support Vector Regression and Feature Selection,” IAES Int. J. Artif Intell. IJ-AI, vol. 8, no. 4, p. 399, Dec. 2019, doi: 10/gjn3zv. [Google Scholar]
- P. L. Braga, A. L. I. Oliveira, and S. R. L. Meira, “A GA-based feature selection and parameters optimization for support vector regression applied to software effort estimation,” in Proceedings of the 2008 ACM symposium on Applied computing, New York, NY, USA, Mar. 2008, pp. 1788–1792, doi: 10/drgmmp. [CrossRef] [Google Scholar]
- A. L. I. Oliveira, P. L. Braga, R. M. F. Lima, and M. L. Cornélio, “GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation,” Inf. Softw. Technol., vol. 52, no. 11, pp. 1155–1166, Nov. 2010, doi: 10/dw8fh3. [CrossRef] [Google Scholar]
- D. Novitasari, I. Cholissodin, and W. F. Mahmudy, “Hybridizing PSO With SA for Optimizing SVR Applied to Software Effort Estimation,” TELKOMNIKA Telecommun. Comput. Electron. Control, vol. 14, no. 1, Art. no. 1, Mar. 2016, doi: 10/gjn3z3. [Google Scholar]
- A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, and E. Mendes, “Investigating the use of Support Vector Regression for web effort estimation,” Empir. Softw. Eng., vol. 16, no. 2, pp. 211–243, Apr. 2011, doi: 10/ch8s8k. [CrossRef] [Google Scholar]
- A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, and E. Mendes, “Using Support Vector Regression for Web Development Effort Estimation,” in Software Process and Product Measurement, Berlin, Heidelberg, 2009, pp. 255–271, doi: 10/d4rhss. [CrossRef] [Google Scholar]
- A. Corazza, S. D. Martino, F. Ferrucci, C. Gravino, and E. Mendes, “Applying support vector regression for web effort estimation using a cross-company dataset,” in 2009 3rd International Symposium on Empirical Software Engineering and Measurement, Oct. 2009, pp. 191–202, doi: 10/frkkms. [CrossRef] [Google Scholar]
- A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, and E. Mendes, “Using tabu search to configure support vector regression for effort estimation,” Empir. Softw. Eng., vol. 18, no. 3, pp. 506–546, Jun. 2013, doi: 10/fnq2hj. [CrossRef] [Google Scholar]
- V. Vapnik, The Nature of Statistical Learning Theory, 2nd ed. New York: SpringerVerlag, 2000. [Google Scholar]
- A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat. Comput., vol. 14, no. 3, pp. 199–222, Aug. 2004, doi: 10/fsv7qx. [CrossRef] [Google Scholar]
- C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10/cv7fn6. [Google Scholar]
- M. Hosni, A. Idri, A. Abran, and A. B. Nassif, “On the value of parameter tuning in heterogeneous ensembles effort estimation,” Soft Comput., vol. 22, no. 18, pp. 5977–6010, Sep. 2018, doi: 10/gd6rhh. [CrossRef] [Google Scholar]
- A. Idri and I. Abnane, “Fuzzy Analogy Based Effort Estimation: An Empirical Comparative Study,” in 2017 IEEE International Conference on Computer and Information Technology (CIT), Helsinki, Finland, Aug. 2017, pp. 114–121, doi: 10/ghp8xv. [CrossRef] [Google Scholar]
- L. N. de Castro and F. J. V. Zuben, “aiNet: An Artificial Immune Network for Data Analysis,” p. 40, doi: 10/fdxcbf. [Google Scholar]
- N. K. Jerne, “Towards a network theory of the immune system,” Ann. Immuno 125C, pp. 373–389, 1974. [Google Scholar]
- V. Cutello, G. Nicosia, and M. Pavone, “Exploring the Capability of Immune Algorithms: A Characterization of Hypermutation Operators,” in Artificial Immune Systems, Berlin, Heidelberg, 2004, pp. 263–276, doi: 10/fnqf2t. [CrossRef] [Google Scholar]
- J. Kelsey and J. Timmis, “Immune Inspired Somatic Contiguous Hypermutation for Function Optimisation,” in Genetic and Evolutionary Computation — GECCO 2003, Berlin, Heidelberg, 2003, pp. 207–218, doi: 10/dhfb4r. [CrossRef] [Google Scholar]
- L. De Castro and F. Von Zuben, “The Clonal Selection Algorithm with Engineering Applications,” Artif Immune Syst., vol. 8, Feb. 2001. [Google Scholar]
- C. J. Burgess and M. Lefley, “Can genetic programming improve software effort estimation? A comparative evaluation,” Inf. Softw. Technol., vol. 43, no. 14, pp. 863–873, Dec. 2001, doi: 10/bk4w52. [CrossRef] [Google Scholar]
- P. L. Braga, A. L. I. Oliveira, G. H. T. Ribeiro, and S. R. L. Meira, “Bagging Predictors for Estimation of Software Project Effort,” in 2007 International Joint Conference on Neural Networks, Aug. 2007, pp. 1595–1600, doi: 10.1109/IJCNN.2007.4371196. [CrossRef] [Google Scholar]
- Miyoung Shin and A.L. Goel, “Empirical data modeling in software engineering using radial basis functions,” IEEE Trans. Softw. Eng., vol. 26, no. 6, pp. 567–576, Jun. 2000, doi: 10/dxsjxc. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.