Open Access
Issue
MATEC Web Conf.
Volume 347, 2021
12th South African Conference on Computational and Applied Mechanics (SACAM2020)
Article Number 00018
Number of page(s) 11
DOI https://doi.org/10.1051/matecconf/202134700018
Published online 23 November 2021
  1. SAE, Antilock Brake System Review, SAE International (2014) [Google Scholar]
  2. Garrott, W. R. & Mazzae, E. N., An overview of the national highway traffic safety administration’s light vehicle antilock brake systems research program, Technical report SAE Technical Paper (1999) [Google Scholar]
  3. Hamersma, H. A, ABS braking on rough terrain, PhD thesis, University of Pretoria (2017) [Google Scholar]
  4. Aly, A. A., Zeidan, E.-S., Hamed, A., Salem, F. et al., ‘An antilock-braking systems (abs) control: A technical review’, Intelligent Control and Automation 2, 186–195 (2011) [CrossRef] [Google Scholar]
  5. Radac, M.-B. & Precup, R.-E, ‘Data-driven model-free slip control of anti-lock braking systems using reinforcement q-learning’, Neurocomputing 275, 317–329 (2018) [CrossRef] [Google Scholar]
  6. Zhao, D., Wang, B. & Liu, D, ‘A supervised actor–critic approach for adaptive cruise control’, Soft Computing 17(11), 2089–2099, (2013) [CrossRef] [Google Scholar]
  7. Sardarmehni, T. & Heydari, A, Optimal switching in anti-lock brake systems of ground vehicles based on approximate dynamic programming, in ‘Dynamic Systems and Control Conference’, American Society of Mechanical Engineers 57267, p. V003T50A010, (2015) [Google Scholar]
  8. Bosch Gmbh, R. & Girling, P, Bosch Driving-safety systems, Society Of Automotive Engineers (1999) [Google Scholar]
  9. Canudas-de Wit, C., Tsiotras, P., Velenis, E., Basset, M. & Gissinger, G, ‘Dynamic friction models for road/tire longitudinal interaction’, Vehicle System Dynamics 39(3), 189–226, (2003) [CrossRef] [Google Scholar]
  10. Penny, W. C. W, ‘Anti-lock braking system performance on rough terrain’, Master’s thesis, University of Pretoria, (2016) [Google Scholar]
  11. van der Merwe, N. A., Els, P. S. & Žuraulis, V, ‘Abs braking on rough terrain’, Journal of Terramechanics 80, 49–57, (2018) [CrossRef] [Google Scholar]
  12. Sutton, R. S. & Barto, A. G, Reinforcement learning: An introduction, MIT press, (2018) [Google Scholar]
  13. Christodoulou, P. Deep-reinforcement-learning-algorithms-with-pytorch, (2017). URL: Available at: https://github.com/p-christ/Deep-Reinforcement-Learning-Algorithms-with-PyTorch [Google Scholar]
  14. Hochreiter, S. & Schmidhuber, J, ‘Long short-term memory’, Neural computation 9(8), 1735–1780, (1997) [CrossRef] [Google Scholar]
  15. Bai, S., Kolter, J. Z. & Koltun, V, ‘An empirical evaluation of generic convolutional and recurrent networks for sequence modeling’, arXiv:1803.01271 (2018) [Google Scholar]
  16. Keshmiri, R. & Shahri, A. M, ‘Intelligent abs fuzzy controller for diverse road surfaces’, World Academy of Science, Engineering and Technology 2(2), 62–67, (2007) [Google Scholar]
  17. Stallmann, M. J. & Els, P. S, ‘Parameterization and modelling of large off-road tyres for ride analyses: Part 2–parameterization and validation of tyre models’, Journal of Terramechanics 55, 85–94, (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.