Open Access
Issue |
MATEC Web Conf.
Volume 347, 2021
12th South African Conference on Computational and Applied Mechanics (SACAM2020)
|
|
---|---|---|
Article Number | 00002 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/matecconf/202134700002 | |
Published online | 23 November 2021 |
- H. Bhadeshia, Metallurgy of Titanium and its Alloys, University of Cambridge, launch site forums metals: videos (2008) [Google Scholar]
- H. T. My Nu, L. P. Minh, N. H. Loc, A study on rotary friction welding of titanium alloy (Ti6Al4V), Adv. Mater. Sci. Eng., vol, 2019 (2019) [Google Scholar]
- P. Mashinini, I. Dinaharan, J. D. R. Selvam, D. Hattingh, Microstructure evolution and mechanical characterization of friction stir welded titanium alloy Ti–6Al–4V using lanthanated tungsten tool, Mater. Charact., vol. 139, pp. 328-336 (2018) [CrossRef] [Google Scholar]
- A. McAndrew, P. Colegrove, C. Buhr, B. Flipo, A literature review of Ti-6Al-4V linear friction welding, Prog. Mater. Sci., vol. 1, no. 92, pp. 225-257 (2018) [CrossRef] [Google Scholar]
- L. M. Gammon, R. D. Briggs, J. M. Packard, K. W. Batson, R. Boyer, C. W. Domby, Metallography and microstructures of titanium and its alloys, ASM handbook, vol. 9, pp. 899-917 (2004) [Google Scholar]
- S. Tolvanen, Microstructure and mechanical properties of Ti-6Al-4V welds produced with different processes, Chalmersa University of Technology, Gothenburg, Sweden (2016) [Google Scholar]
- D. Bohme, L. Appel, H. Cramer, Joint of titanium/titanium/steel by friction welding with continuous drive, TIMA, Timisoara, Romania, pp. 11-12 (2009) [Google Scholar]
- A. A. M. Da Silva, An Investigation on the Structure, Property Relationships of Solid State Welding Processes in a Titanium Matrix Composite Alloy (Ti6Al4V+ 10 Wt.% of TiC), GKSS-Forschungszentrum (2006) [Google Scholar]
- M. Grujicic, G. Arakere, H. Yalavarthy, T. He, C.-F. Yen, B. Cheeseman, Modeling of AA5083 material-microstructure evolution during butt friction-stir welding, J. Mater. Eng. Perform., vol. 19, no. 5, pp. 672-684 (2010) [CrossRef] [Google Scholar]
- R. Palanivel, R. Laubscher, I. Dinaharan, An investigation into the effect of friction welding parameters on tensile strength of titanium tubes by utilizing an empirical relationship, Meas. Tech., vol. 98, pp. 77-91 (2017) [CrossRef] [Google Scholar]
- A. W. Society, Friction welding process: how does rotary or rotational friction welding works, AFW (2016) [Google Scholar]
- A. W. Society, Recommended practices for Friction welding, New York, (ANSI) (1989) [Google Scholar]
- TWI, What is friction welding, TWI (2018) [Google Scholar]
- Y. Morisada, T. Imaizumi, H. Fujii, Clarification of material flow and defect formation during friction stir welding, Sci. Technol. Weld. Join., vol. 20, no. 2, pp. 130-137 (2015) [CrossRef] [Google Scholar]
- P. Podržaj, B. Jerman, D. Klobčar, Welding defects at friction stir welding, Metalurgija, vol. 54, no. 2, pp. 387-389 (2015) [Google Scholar]
- V. I. Vill, Friction welding of metals, American Welding Society, trade distributor: Reinhold Publishing Company (1962) [Google Scholar]
- E. P. Alves, C. Y. An, F. P. Neto, E. F. dos Santos, Experimental determination of temperature during rotary friction welding of dissimilar materials, FAE, vol. 1, no. 1, pp. 20-26 (2012) [Google Scholar]
- G. Pinheiro, A. Meyer, J. dos Santos, A Literature Review on Friction Welding, GKSS, J. Mater. Res. Technol. (2000) [Google Scholar]
- A. Yates, The effect of microstructure on mechanical properties in inertia welded mtitanium 6-4, University of Birmingham (2015) [Google Scholar]
- P. L. Threadgill, The potential for solid state welding of titanium pipes in offshore industries, Symposium on the Right Use of Titanium, November 4-5 (1997) [Google Scholar]
- V. Munchen, Joint of Titanium/Titanium/Steel by Friction Welding with Continuous Drive, TIMA, vol. 1, no. 1 (2000) [Google Scholar]
- A. Wisbey, I. Wallis, H. Ubhi, P. Sketchley, C. Ward-Close, P. Thereadgill, Mechanical properties of friction welds in high strength titanium alloys, pp. 1718-1725 (2009) [Google Scholar]
- P. Mashinini, D. Hattingh, Influence of laser heat input on weld zone width and fatigue performance of Ti-6Al-4V sheet, Mater. Sci. Eng. B., vol. 262, pp. 114-699 (2020) [Google Scholar]
- A. Standard, E8/E8M-13a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM Int., West Conshohocken, PA, (2013) [Google Scholar]
- A. Standard, E92 82, Standard Test Method for Vickers Hardness of Metallic Materials, ASTM Int., West Conshohocken, PA 19428 (1997) [Google Scholar]
- R. Palanivel, R. Laubscher, I. Dinaharan, D. Hattingh, Microstructure and mechanical characterization of continuous drive friction welded grade 2 seamless titanium tubes at different rotational speeds, Int. J. Press. Vessel., vol. 154, pp. 17-28 (2017) [CrossRef] [Google Scholar]
- E. C. Dalgaard, Evolution of microstructure, microtexture and mechanical properties in linear friction welded titanium alloys, McGill University Library (2011) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.