Open Access
Issue
MATEC Web Conf.
Volume 345, 2021
20th Conference on Power System Engineering
Article Number 00002
Number of page(s) 9
DOI https://doi.org/10.1051/matecconf/202134500002
Published online 12 October 2021
  1. Jandacka, J. - Micieta, M. - Holubcik, M. - Nosek, R., (2016): Inovácie na zefektivnenie procesu spal’ovania biomasy. Zilina: EDIS - vydavatel’ské centrum ZU, 265 s. ISBN 978-80-554-1236-8. [Google Scholar]
  2. Hernandez, R. - Ballester, J. Flame imaging as a diagnostic tool for industrial combustion. Combustion and Flame. (2008). 155. s. 509–528. [CrossRef] [Google Scholar]
  3. Han, Z. - Li, J. - Hossain, M. - Xu, Ch. Prediction of combustion state through a semi-supervised learning model and flame imaging. Fuel. (2021). 289 s. [Google Scholar]
  4. Zheng, Z. et al. Progress in the Application of Machine Learning in Combustion Studies. ES Energy & Environment. (2020). [Google Scholar]
  5. Morari, M. - Lee, J. H. Model predictive control: past, present and future. Computers & Chemical Engineering. (1999). 23(4-5). s. 667–682. [CrossRef] [Google Scholar]
  6. Elmaz, F. - Yücel, Ö. - Mutlu, A. I. Predictive modeling of biomass gasification with machine learning-based regression methods. Energy. (2020). 191, ISSN: 0360-544. [Google Scholar]
  7. Baruah, D., Baruah, D.C., Hazarika, M.K., (2017). Artificial neural network based modeling of biomass gasification in fixed bed downdraft gasifiers. Biomass and Bioenergy 98, s. 264–271. [CrossRef] [Google Scholar]
  8. Mutlu, A.Y., Yucel, O., (2018). An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification. Energy 165, s. 895–901. [CrossRef] [Google Scholar]
  9. Zhou, Z.-H. A brief introduction to weakly supervised learning. National Science Review. (2018). 5(1). s. 44–53. [CrossRef] [Google Scholar]
  10. Binod, J. R. - Ravi, M. R. Development of numerical model for analysis of biomass based pottery furnace. [autorcafé], (2019), s.l.: Summer Research Fellowship Programme of India’s Science Academies. [Google Scholar]
  11. Ambroise, C. - Mclachlan G.J. Selection bias in gene extraction on the basis of microarray gene-expression data. (2002). Proc Natl Acad Sci, 99 (10), pp. 6562–6566 [CrossRef] [Google Scholar]
  12. Draper, N. R. - Smith, H. Applied Regression Analysis. (1998). Wiley-Interscience. ISBN 978-0-471-17082-2 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.