Open Access
Issue |
MATEC Web Conf.
Volume 339, 2021
International Conference on Sustainable Transport System and Maritime Logistics (ISTSML 2021)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/202133901009 | |
Published online | 02 July 2021 |
- Bilovodsjka, O. (2018). Ocinjuvannja postachaljnykiv u loghistychnykh (dystrybucijnykh) kanalakh komerciji innovacijnoji produkciji. Marketyngh i menedzhment innovacij, 1, 45–61. [Google Scholar]
- Voznjuk, N., Rusynova, O., Parubec, E., Shkolenko, O., Ermyshova, S. (2019). Rozroblennja metodychnogho pidkhodu do upravlinnja postachannjam materialjnogho zabezpechennja u procesi rozvytku promyslovogho pidpryjemstva. Finansovo-kredytna dijaljnistj: problemy teoriji ta praktyky, 1(28), 313–325. [Google Scholar]
- Romashhenko, O. (2017). Obghruntuvannja polityky vzajemodiji torghoveljnogho pidpryjemstva iz postachaljnykamy na pidpstavi kompleksnoji ocinky efektyvnosti. Ekonomika. Menedzhment. Biznes, 2(20), 75–82. [Google Scholar]
- Kondratjuk, D. (2014). Optymaljnyj postachaljnyk jak chynnyk konkurentospromozhnosti pidpryjemstv. Ekonomika. Upravlinnja. Innovaciji. 1(11). [Google Scholar]
- Che, Z., Wang, H. (2010). A hybrid approach for supplier cluster analysis. Computers and Mathematics with Applications, 59, 745–763. [CrossRef] [Google Scholar]
- Yu, C., Wong, T. (2015). An agent-based negotiation model for supplier selection of multiple products with synergy effect. Expert Systems with Applications, 42, 223–237. [CrossRef] [Google Scholar]
- Khaleie, S., Fasanghari, M., Tavassoli, E. (2012). Supplier selection using a novel intuitionist fuzzy clustering approach. Applied Soft Compuing, 12, 1741–1754. [CrossRef] [Google Scholar]
- Gegovska, T., Koker, R, Cakar, T. (2020). Green Supplier Selection Using Fuzzy Multiple-Criteria Decision-Making Methods and Artificial Neural Networks, Computational Intelligence and Neuroscience, 2020, 1–26. [Google Scholar]
- Hsu, Y.-C., Lu, H.-A., & Chu, C.-W. (2015). Evaluating and selecting maritime suppliers. Maritime Policy & Management, 43(1), 39–58. [CrossRef] [Google Scholar]
- Ghodsypour, O'Brien (2001). The total cost of logistics in supplier selection, under conditions of multiple sourcing, multiple criteria and capacity constraint. International Journal of Production Economics, 73(1), 15–27. [CrossRef] [Google Scholar]
- Dulmin, R., Mininno, V. (2003). Suplier selection using a multi-criteria decision aid method. Journal of Purchasing and Supply Management, 9(4), 177–187. [CrossRef] [Google Scholar]
- Saaty, R. (1987). The analytic hierarchy process: What it is and how it is used. Mathematical Modelling, 9, 3–5, 161–176. [CrossRef] [Google Scholar]
- Olson, D. (1996). The Analytic Hierarchy Process. Decision Aids for election Problem. Springer Series in Operations Research and Financial Engineering. https://www.springer.com/gp/book/9780387945606 [Google Scholar]
- Najib, M. (2021). Application of SWOT-AHP to develop organic food marketing strategy. Academy of Strategic Management Journal, 20(1), 1–8. [Google Scholar]
- Kunycjka, O., Dzhyghyr, V. (2017). Vykorystannja metodu analitychnoji ijerarkhiji(metodu Saati) dlja vyznachennja miscja roztashuvannja skladsjkogho kompleksu. Naukovo-tekhnichnyj zbirnyk «Visnyk Nacionaljnogho transportnogho universytetu», 1(37), 183–188. 16. [Google Scholar]
- Ting, S., Cho, D. (2008). An integrated approach for supplier selection and purchasing decision. Supply Chain Management: An International Journal, 13/2, 116–127. [CrossRef] [Google Scholar]
- Tan, P., Vipin, K. (2005). Cluster Analysis: Basic Concepts and Algorithms. Introduction to Data Mining, 1, 487–568. [Google Scholar]
- Rozen, V., Ishhuk, P., Davydenko, L. (2010). Vykorystannja metodu k-serednikh klasternogho analizu pid chas rozvjazannja zadach energhetychnoji bezpeky teoriji. Naukovo-tekhnichnoji biblioteky NU «Ljvivsjka politekhnyka». [Google Scholar]
- Chukhraj, A., Vaghyn, E. (2011). Prymenenye metoda k-srednykh dlja formyrovanyja vneshnegho cykla obuchenyja v kompjjuternыkh proghrammakh, obuchajushhykh SQL, 2(50), 81–88. [Google Scholar]
- Orlov, P. (2015). Suchasnyj marketyngh: analiz ta perspektyvy rozvytku. Vydannja KhNEU im. S. Kuznecja. [Google Scholar]
- Rozhak, J., Salo, A. (2016). Proghramna systema monitorynghu anomaljnoji povedinky bankomativ pry provedenni zlovmysnykh tranzakcij. Suchasnyj stan ta perspektyvy rozvytku komp'juternykh system ta merezh. Materialy konferenciji. [Google Scholar]
- Lotosh, O. (2019). Klasternyj analiz seghmentaciji ghaluzi. Visnyk Odesjkogho nacionaljnogho universytetu. Ekonomika, 5(78), 37–42. [Google Scholar]
- Liu, W. Luo, T., Wang, W. (2006). Quality evaluation for three textual document clustering algorithms, J. Graduate School. Chinese Acad, 23, 640–646. [Google Scholar]
- Kanungo, T., Mount, D., Netanyahu, N. (2002) An Efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 881–892. [CrossRef] [Google Scholar]
- Susana, A., Leiva-Valdebenito, F., Torres-Aviles. (2010). A Review of the Most Common Partition Algorithms in Cluster Analysis: A Comparative Study. Colombian Journal of Statistics, 33(2), 321–339. [Google Scholar]
- Velmurugan, T. (2012). Efficiency of k-means and k-medoids algorithm for cluster Arbitrary Data Points. Int. J. Computer Technology & Application, 3(5), 1758–1764. [Google Scholar]
- Wei, C.-T., Zuo, H., Jiang, C.-B., Li S.-F. (2017). Modeling Multilevel Supplier Selection Problem Based on Weighted-Directed Network and Its Solution, Discrete Dynamics in Nature and Society, 2017, 1–12. [Google Scholar]
- Mahadab, A. (2020). A Study of Self- Organizing Maps(SOM) Neural Network Using Matlab. Research on Humanities and Social Sciences, 6(10), 1–22. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.