Open Access
Issue
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 04008
Number of page(s) 8
Section Tailings and Waste Disposal
DOI https://doi.org/10.1051/matecconf/202133704008
Published online 26 April 2021
  1. R. K. Rowe (2020). Geosynthetic clay liners: perceptions and misconceptions. Geotextiles and Geomembranes, 48(2), 137–156, https://doi.org/10.1016/j.geotexmem.2019.11.012 [Google Scholar]
  2. W. P. Hornsey, J. Scheirs W. P. Gates, & A. Bouazza (2010). The impact of mining solutions/liquors on geosynthetics. Geotextiles and Geomembranes, 28(2), 191–198, https://doi.org/10.1016/j.geotexmem.2009.10.008 [Google Scholar]
  3. I. Hamawand, T. Yusaf & S.G. Hamawand (2013). Coal seam gas and associated water: a review paper. Renewable and Sustainable Energy Reviews, 22, 550-560. https://doi.org/10.1016/j.rser.2013.02.030 [Google Scholar]
  4. A. Bouazza & W.P. Gates (2014). Overview of performance compatibility issues of GCLs with respect to leachates of extreme chemistry. Geosynthetics International, 21(2), 151–167. https://doi.org/10.1680/gein.14.00006 [Google Scholar]
  5. A. Y. AbdelRazek & R. K. Rowe. (2019). Interface transmissivity of conventional and multicomponent GCLs for three permeants. Geotextiles and geomembranes, 47(1), 60–74. https://doi.org/10.1016/j.geotexmem.2018.10.001 [Google Scholar]
  6. A. S. Acikel, W. P. Gates, R. M. Singh, A. Bouazza & R. K. Rowe (2018). Insufficient initial hydration of GCLs from some subgrades: factors and causes. Geotextiles and Geomembranes, 46(6), 770–781. https://doi.org/10.1016/j.geotexmem.2018.06.007 [Google Scholar]
  7. R. Anderson, M. T. Rayhani & R. K. Rowe (2012). Laboratory investigation of GCL hydration from clayey sand subsoil. Geotextiles and Geomembranes, 31, 31-38. https://doi.org/10.1016/j.geotexmem.2011.10.005 [Google Scholar]
  8. A. Bouazza, R. M. Singh, R. K. Rowe & F. Gassner (2014). Heat and moisture migration in a geomembrane–GCL composite liner subjected to high temperatures and low vertical stresses. Geotextiles and Geomembranes, 42(5), 555–563. https://doi.org/10.1016/j.geotexmem.2014.08.002 [Google Scholar]
  9. A. Bouazza, M. A. Ali, W. P. Gates & R. K. Rowe (2017). New insight on geosynthetic clay liner hydration: the key role of subsoils mineralogy. Geosynthetics International, 24(2), 139–150. https://doi.org/10.1680/jgein.16.00022 [Google Scholar]
  10. M. T. Rayhani, R. K. Rowe, R. W. I. Brachman, W. A. Take & G. Siemens (2011). Factors affecting GCL hydration under isothermal conditions. Geotextiles and Geomembranes, 29(6), 525–533. https://doi.org/10.1016/j.geotexmem.2011.06.001 [Google Scholar]
  11. G. Siemens, W. A. Take, R. K. Rowe, & R. W. I. Brachman (2012). Numerical investigation of transient hydration of unsaturated geosynthetic clay liners. Geosynthetics International, 19(3), 232–251. https://doi.org/10.1680/gein.12.00011 [Google Scholar]
  12. A. S. Acikel, W. P. Gates, R. M. Singh, A. Bouazza, & R. K. Rowe (2018). Insufficient initial hydration of GCLs from some subgrades: factors and causes. Geotextiles and Geomembranes, 46(6), 770–781. https://doi.org/10.1016/j.geotexmem.2018.06.007 [Google Scholar]
  13. A. Bouazza, M. A. Ali, R. K. Rowe, W. P. Gates & A. El-Zein (2017). Heat mitigation in geosynthetic composite liners exposed to elevated temperatures. Geotextiles and Geomembranes, 45(5), 406–417. https://doi.org/10.1016/j.geotexmem.2017.05.004 [Google Scholar]
  14. A. Ghavam-Nasiri, A. El-Zein, D. Airey & R. K. Rowe (2019). Water retention of geosynthetics clay liners: Dependence on void ratio and temperature. Geotextiles and Geomembranes, 47(2), 255–268. https://doi.org/10.1016/j.geotexmem.2018.12.014 [Google Scholar]
  15. B. Chevrier, D. Cazaux, G. Didier, M. Gamet, & D. Guyonnet (2012). Influence of subgrade, temperature and confining pressure on GCL hydration. Geotextiles and Geomembranes, 33, 1-6. https://doi.org/10.1016/j.geotexmem.2012.02.003 [Google Scholar]
  16. A. Bouazza, J. Zornberg, J. S. McCartney, & R.M. Singh (2013). Unsaturated geotechnics applied to geoenvironmental engineering problems involving geosynthetics. Engineering geology, 165, 143-153. https://doi.org/10.1016/j.enggeo.2012.11.018 [Google Scholar]
  17. M. Tincopa Heredia (2020): Experimental and numerical studies of moisture movements through a GCL composite liner under elevated temperatures and low/high confining stresses. Monash University. Thesis. https://doi.org/10.26180/5ebb333b19048 [Google Scholar]
  18. M. Tincopa & A. Bouazza (2020). Water retention curves of geosynthetic clay liners under non-uniform temperature-stress paths. Geomembrane & Geotextiles. In press. [Google Scholar]
  19. J. Krahn (2004). Geostudio tutorials. [Google Scholar]
  20. G. W. Wilson (1990). Soil evaporative fluxes for geotechnical engineering problems (Doctoral dissertation, University of Saskatchewan). [Google Scholar]
  21. S. Olivella & A. Gens (2000). Vapour transport in low permeability unsaturated soils with capillary effects. Transport in Porous Media, 40(2), 219–241. https://doi.org/10.1023/A:1006749505937 [Google Scholar]
  22. O. T. Farouki (1981). The thermal properties of soils in cold regions. Cold Regions Science and Technology, 5(1), 67–75. [Google Scholar]
  23. O. Johansen (1977). Thermal conductivity of soils. Cold Regions Research and Engineering Lab Hanover NH. https://doi.org/10.1016/0165-232X(81)90041-0 [Google Scholar]
  24. M. T. Van Genuchten (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892–898. [Google Scholar]
  25. G. G. Carnero-Guzman, (2019): Hydraulic behaviour of geosynthetic clay liners under polar climate conditions. Monash University. Thesis. https://doi.org/10.26180/5dc384fba2b80 [Google Scholar]
  26. M. Tincopa, A. Bouazza, R. K. Rowe & H. Rahardjo, (2020). Back-analysis of the water retention curve of a GCL on the wetting path. Geosynthetics International 2020 27:5, 523-537. https://doi.org/10.1680/jgein.20.00016 [Google Scholar]
  27. S. A. Grant, & A. Salehzadeh (1996). Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions. Water Resources Research, 32(2), 261–270. https://doi.org/10.1029/95WR02915 [Google Scholar]
  28. L. Laloui, S. Salager, & M. Rizzi (2013). Retention behaviour of natural clayey materials at different temperatures. Acta Geotechnica, 8(5), 537–546. https://doi.org/10.1007/s11440-013-0255-2 [Google Scholar]
  29. M. Wan, W. M. Ye, Y. G. Chen, Y. J. Cui & J. Wang, (2015). Influence of temperature on the water retention properties of compacted GMZ01 bentonite. Environmental Earth Sciences, 73(8), 4053–4061. https://doi.org/10.1007/s12665-014-3690-y [Google Scholar]
  30. P. Roshani & J. Á. I. Sedano (2016). Incorporating temperature effects in soil-water characteristic curves. Indian Geotechnical Journal, 46(3), 309–318. https://doi.org/10.1007/s40098-016-0201-y [Google Scholar]
  31. W. Wang, J. Rutqvist, U. J. Görke, J. T. Birkholzer, & O. Kolditz (2011). Non-isothermal flow in low permeable porous media: a comparison of Richards’ and two-phase flow approaches. Environmental Earth Sciences, 62(6), 1197–1207. https://doi.org/10.1007/s12665-010-0608-1 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.