Open Access
Issue
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 03009
Number of page(s) 7
Section Slopes, Embankments, Roads, and Foundations
DOI https://doi.org/10.1051/matecconf/202133703009
Published online 26 April 2021
  1. N. Khalili, M.H. Khabbaz, S. Valliappan (2000). Effective stress based numerical model for hydro-mechanical analysis in unsaturated porous media. Comput. Mech. 26: 2, 174–184. [Google Scholar]
  2. S. Qi, S.K. Vanapalli (2015). Hydro-mechanical coupling effect on surficial layer stability of unsaturated expansive soil slopes. Comput. Geotech. 70, 68–82. [Google Scholar]
  3. L. Pantelidis, D.V. Griffiths (2015). Footing on the Crest of Slope: Slope stability or Bearing Capacity. Eng. Geol. Soc. Territ. 2, 1231–1234. [Google Scholar]
  4. E. Baah-Frempong, S.K. Shukla (2018). Stability analysis and design charts for a sandy soil slope supporting an embedded strip footing. Int. J. Geo-Engineering. 9, 1, 1–23. [Google Scholar]
  5. K.Y. Choi, R.W.M. Cheung (2013). Landslide disaster prevention and mitigation through works in Hong Kong. J. Rock Mech. Geotech. Eng. 5, 5, 354–365. [Google Scholar]
  6. G.G. Meyerhof (1957). The Ultimate Bearing Capacity of Foundations on Slopes. Proc. Fourth Int. Conf. Soil Mech. Found. Eng. London. August, 384–386. [Google Scholar]
  7. D. Shields, N. Chandler, J. Garnier (1990). Bearing capacity of foundations in slopes. J. Geotech. Eng. 116, 3, 528–537. [Google Scholar]
  8. D. Raj, Y. Singh, S.K. Shukla (2018). Seismic bearing capacity of strip foundation embedded in c-ϕ soil slope. Int. J. Geomech. 18, 7, 1–16. [Google Scholar]
  9. A. Dey, R. Acharyya, A. Alammyan (2019). Bearing capacity and failure mechanism of shallow footings on unreinforced slopes: a state-of-the-art review. Int. J. Geotech. Eng. [Google Scholar]
  10. C. Li, A. Zhou, P. Jiang (2020). Eccentric bearing capacity of embedded strip footings placed on slopes. Comput. Geotech. 119, November 2019, 103352. [Google Scholar]
  11. S.K. Vanapalli, F.M.O. Mohamed (2013). Bearing capacity and settlement of footings in unsaturated sands. Int. J. Geomate. 5: 1, 595–604. [Google Scholar]
  12. W.T. Oh, S.K. Vanapalli (2011). Modelling the applied vertical stress and settlement relationship of shallow foundations in saturated and unsaturated sands. Canadian Geotech. J. 48, 425–438. [Google Scholar]
  13. T.M.H. Le, D. Gallipoli, M. Sanchez, S. Wheeler (2013). Rainfall-induced differential settlements of foundations on heterogeneous unsaturated soils. Géotechnique 63, 15, 1346–1355. [Google Scholar]
  14. Y. Kim, H. Park, S. Jeong (2017). Settlement behavior of shallow foundations in unsaturated soils under rainfall. Sustain. 9, 1417. [Google Scholar]
  15. Y. Tang, H.A. Taiebat, A.R. Russell (2017). Bearing capacity of shallow foundations in unsaturated soil considering hydraulic hysteresis and three drainage conditions. Int. J. Geomech. 17, 6, 04016142. [Google Scholar]
  16. V. Mahmoudabadi, S.M. Asce, N. Ravichandran, D. Ph, M. Asce (2019). Design of Shallow Foundation considering Site-Specific Rainfall and Water Table Data : Theoretical Framework and Application. Int. J. Geomech. 19, 7, 04019063. [Google Scholar]
  17. C.W.W. Ng, L.T. Zhan, C.G. Bao, D.G. Fredlund, B.W. Gong (2003). Performance of an unsaturated expansive soil slope subjected to artificial rainfall infiltration. Géotechnique. 53, 2, 143–157. [Google Scholar]
  18. M.S. Khan, S. Hossain, A. Ahmed, M. Faysal (2017). Investigation of a shallow slope failure on expansive clay in Texas. Eng. Geol. 219, 118–129. [Google Scholar]
  19. Geo-Slope Int. Ltd, Geo-studio 2018 R2. [Google Scholar]
  20. R.T. Yoshida, D.G. Fredlund, J.J. Hamilton (1983). The prediction of total heave of a slab-on-ground floor on Regina clay. Can. Geotech. J. 20, 1, 69–81. [Google Scholar]
  21. S. Azam, M. Ito (2011). Unsaturated soil properties of a fissured expansive clay. 14th Pan-American Conf. Soil Mech. Geotech. Eng. [Google Scholar]
  22. J.H. Li, L.M. Zhang, X. Li (2011). Soil-water characteristic curve and permeability function for unsaturated cracked soil. Can. Geotech. J. 48, 7, 1010–1031. [Google Scholar]
  23. F. Shuai (1996). Simulation of swelling pressure measurements on expansive soils. Doctor of Philosophy thesis. [Google Scholar]
  24. S.K. Vanapalli, D.G. Fredlund, D.E. Pufahl, A.W. Clifton (1996). Model for the prediction of shear strength with respect to soil suction. Can. Geotech. J. 33, 3, 379–392. [Google Scholar]
  25. W.T. Oh, S.K. Vanapalli, A.J. Puppala (2009). Semi-empirical model for the prediction of modulus of elasticity for unsaturated soils. Can. Geotech. J. 46, 8, 903–914. [Google Scholar]
  26. H.H. Adem, S.K. Vanapalli (2013). Constitutive modeling approach for estimating 1-D heave with respect to time for expansive soils. Int. J. Geotech. Eng. 7, 2, 199–204. [Google Scholar]
  27. Y.D. Costa, J.C. Cintra, J.G. Zornberg (2003). Influence of matric suction on the results of plate load tests performed on a lateritic soil deposit. Geotech. Test. J. 26, 2, 219–227. [Google Scholar]
  28. W.T. Oh, S.K. Vanapalli (2013). Interpretation of the Bearing Capacity of Unsaturated Fine-Grained Soil Using the Modified Effective and the Modified Total Stress Approaches. Int. J. Geomech. 13, 6, 769–778. [Google Scholar]
  29. N. U. Morgenstern, V. E. Price (1965). The analysis of the stability of general slip surfaces. Géotechnique. 15, 1, 79–93. [Google Scholar]
  30. Geo-SLOPE International Ltd. (2012). Stability modeling with SLOPE/W, An Engineering Methodology. [Google Scholar]
  31. AASHTO (2014). LRFD Bridge Design Specifications, Seventh Edition. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.