Open Access
Issue
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 01001
Number of page(s) 7
Section Fundamentals and Experimental Investigations
DOI https://doi.org/10.1051/matecconf/202133701001
Published online 26 April 2021
  1. T.F. Chiu & C.D. Shackelford (1994) Practical aspects of the capillary barrier effect for landfills. Proc. 17th Annual Madison Waste Conf. Dept. of Engrg. Prof. Dev., Univ. of Wisconsin, Madison, Wis., 357–365. [Google Scholar]
  2. X. Wang & C.H. Benson (1995) Infiltration and saturated hydraulic conductivity of compacted clay. J. of Geotech Engrg, ASCE, 121(10),713–22. [Google Scholar]
  3. M. Khire, C. Benson & P. Bosscher (1997) Water balance modeling of earthen final covers at humid and semi-arid sites. J. Geotech. Engrg., ASCE, 123 (8), 744–754. [Google Scholar]
  4. M.V. Khire, C.H. Benson, P.J. Boscher & R.J. Pliska (1994). Field – scale comparison of capillary and resistive barriers in an arid climate Procs 14th Annual Amer Geophys. Union Hydrol Days, H.J. Morel-Seytoux, ed., Colorado State Uni, Fort Collins, Colo., 195–209. [Google Scholar]
  5. M.V. Khire, J.S. Meerdink, C.H. Benson & P.J. Bosscher (1995). Unsaturated hydraulic conductivity and water balance predictions for earthen landfill final covers’ Soil suction appls in Geotech Eng prac, W.K. Wray & S.L. Houston, eds., A.S.C.E., 35–57. [Google Scholar]
  6. T.F. Chiu, & C.D. Shackelford (1998). Unsaturated hydraulic conductivity of compacted sand-kaoline mixtures, J. of Geotech. & Geo. Eng, A.S.C.E., 24(2), 160–170. [Google Scholar]
  7. J.S. Meerdink, C.H. Benson & M.V. Khire, (1996). Unsaturated hydraulic conductivity of two compacted barrier soils. J. of Geotech Eng. A.S.C.E., 122(7), 565–576. [Google Scholar]
  8. C.J. Miller, N. Yesiller, K. Yaldo & S. Merayyan (2002). Impact of soil type and compaction conditions on soil water characteristics J. of Geotech & Geoenviron Eng. 128(9), 733–742. [Google Scholar]
  9. D.G. Fredlund, A. Xing & S. Huang (1994) Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Can Geotech J. 31(3), 521–532. [Google Scholar]
  10. A.O. Eberemu, A.A. Amadi & K.J. Osinubi. (2013) The use of compacted tropical clay treated with rice husk ash as a suitable hydraulic barrier material in waste containment application’ Was & Biom 4, (2),309–323. [Google Scholar]
  11. K.J. Osinubi, A.O. Eberemu, & A.A. Amadi, (2012). Compatibility of compacted lateritic soil treated with bagasse ash and municipal solid waste leachate’ Int J. of Env & Waste Man (IJEWM) 10(4),365–376. Inderscience Publishers Ltd., United Kingdom. [Google Scholar]
  12. K. J. Osinubi, A.O. Eberemu, T.S. Ijimdiya & P. Yohanna. (2020) Interaction of Landfill Leachate with Compacted Lateritic Soil Treated with Bacillus coagulans Using Microbial-Induced Calcite Precipitation Approach. J. of Haz, Tox, & Rad Waste. ASCE DOI: 10.1061/(ASCE)HZ.2153–5515.0000465. [Google Scholar]
  13. J.T. DeJong, M.B. Fritzges & K. Nusslein (2006) Microbial induced cementation to control sand response to undrained shear. ASCE J. Geotech & Geoenviron. Engng 132(11), 1381–1392. [Google Scholar]
  14. B.L. Banagan, B. M. Wertheim, M.J.S. Roth & L.F. Caslake (2010) Microbial strengthening of loose sand. Lett. Appl. Microbiol. 51(2), 138–142. [Google Scholar]
  15. J. K. Firas & Z. Jun-Jie (2017) Influences of Calcium Sources and Type of Sand on Microbial Induced Carbonate Precipitation Int J. of Adv in Engng & Tech. 10(1), 20–29. [Google Scholar]
  16. R. M. P. Carla, F. Carolyn, C.M. Carlos, M. Richard & J. Todd (2020) Microbiologically Induced Calcite Precipitation biocementation, green alternative for roads – is this the breakthrough?A critical review. J. of Clea product. https://doi.org/10.1016/j.jclepro.2020.121372. [Google Scholar]
  17. L. Chi, Y. De, L. Shihui, Z. Tuanjie, B. Siriguleng, G. Yu & L. Lin (2017) Improvement of Geomechanical Properties of Bio-remediated Aeolian Sand, Geomicrogy J, DOI: 10.1080/01490451.2017.1338798. [Google Scholar]
  18. A. Erdal, B. Omer & M.D. Nazime (2017) Strengthening sandy soils by microbial methods. Arabn J. of Geosci. DOI 10.1007/s12517–017–3123–9. [Google Scholar]
  19. R.H Brooks & A.T. Corey (1964). Hydraulic properties of porous media. Colorado State University, Hydrology Paper. 3, Fort Collins, Colorado. [Google Scholar]
  20. E.C. Leong & H. Rahardjo (1997). Review of soil water characteristic curve equations’, J. of Geotech & Geoenviron Engrg, A.S.C.E., 123(12). [Google Scholar]
  21. M. Gui, C. Wu & C. Lu (2011) Comparison of Two Water Storage Functions of Soil on Porewater Pressure of Earth-Filled Dam under Changing Environment” Proc of the 28th Int Assoc for Autom and Robot in Construn, ISARC, Seoul Korea, 534–543. http://www.iaarc.org/publications/fulltext/S15–7.pdf. [Google Scholar]
  22. D.G. Fredlund & A. Xing (1994). Equations for the Soil-Water Characteristic Curve. Can Geotech J, 31(4), 521–532. DOI:10.1139/t94–061. [Google Scholar]
  23. B.G. Alavijeh, A. Liaghat, H. Guan-Hua & M. T. Van genuchten, (2010) Estimation of the van Genuchten Soil Water Retention Properties from Soil Textural Data. J. of Pedo 20 (4), 456–465. [Google Scholar]
  24. Y. E. Tamer, A. Ahmed, D. Muawia & A. Mosleh (2017) Effect of compaction state on the soil water characteristic curves of sand–natural expansive clay mixtures, Eur J. of Environtl and Civ Engng, 21:3, 289–302. [Google Scholar]
  25. J. M. Tinjum, C.H. Benson, & L.R Blotz. (1997). Soil-water characteristic curves for compacted clays. J. of Geotech & Geoenvron Engng. 123(11), 1060–1069. [Google Scholar]
  26. ATCC (2013). American Type Culture Collection P.O Box 1549 Manassas, VA 20108 USA. http://www.atcc.org. [Google Scholar]
  27. S. Stocks-Fischer, J.K. Galinat, & S.S Bang. (1999). Microbiological precipitation of CaCO3. Soil Bio and Biochem 31 (11), 1563–1571. [Google Scholar]
  28. BS 1377, (1990). Methods of Testing Soil for Civil Engineering Purposes. British Standards Institute, London. [Google Scholar]
  29. BS 1924, (1990). Methods of Test for Stabilized Soils. British Standards Institute, London. [Google Scholar]
  30. K. Rowshanbakhta, M. Khamehchiyana, R.H. Sajedib & M.R. Nikudela, (2016) Effect of Injected Bacterial Suspension Volume and Relative Density on Carbonate Precipitation Resulting from Microbial Treatment. J. of Ecol Engng, 89, 49–55 https://doi.org/10.1016/j.ecoleng.2016.01.010. [Google Scholar]
  31. ASTM (1994). Standard test method for capillary moisture relationships for fine-textured soils by pressure membrane apparatus’ Designation: D 3152–72. West Conshohocken, Pa. [Google Scholar]
  32. H. Rong & C. Qian (2013) Microstructure Evolution of Sandstone Cemented by Microbe Cement Using X-ray Computed Tomography Journal of Wuhan University of Technology-Mater. Sci. 28 (6), 1134–1139 DOI 10.1007/s11595–013–0833-z. [Google Scholar]
  33. D. G. Fredlund, D. Sheng, & J. Zhao (2011) Estimation of Soil Suction from the Soil-Water Characteristic Curve. Can Geotech J. 48, 186–198. [Google Scholar]
  34. C. M. O Nwaiwu (2004) Compacted Lateritic Soils as Hydraulic Barriers in Municipal Solid Waste Containment systems. A PhD dissertation presented to the Postgraduate School, Ahmadu Bello Univ, Zaria, Nigeria. [Google Scholar]
  35. J.R Oluremi (2015) Evaluation of Waste Wood ash Treated Lateritic Soil for Use in Municipal Soild Waste Containment Application An unpublished Ph.D dissertation presented to the Postgraduate School, Ahmadu Bello Univ, and Zaria, Nigeria. [Google Scholar]
  36. A.R. Osim (2017) Compacted Cement Kiln Dust Treated Black Cotton Soil as Suitable Liner and Cover Material in Waste Containment Facilities. An unpublished Ph.D dissertation presented to the Postgraduate School, Ahmadu Bello Univ, Zaria, Nigeria. [Google Scholar]
  37. S.A. Abo-El-Enein, A.H. Ali, F. N. Talkhan, & H.A. Abdel-Gawwad, (2012) Utilization of Microbial Induced Calcite Precipitation for Sand Consolidation and Mortar Crack Remediation. J. of Houng & Buildng Natl Res Cente, 8, 185–192. [Google Scholar]
  38. K. Muthukkumaran & S.S. Bettadapura. (2016). Durability of microbial Induced Calcite Precipitation (MICP ) treated cohesionless soil. Jap geotech socie, 2(56), 1946–1949. doi:10.3208/jgssp.IND-23. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.