Open Access
Issue |
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
|
|
---|---|---|
Article Number | 07002 | |
Number of page(s) | 7 | |
Section | Intelligence Algorithms and Application | |
DOI | https://doi.org/10.1051/matecconf/202133607002 | |
Published online | 15 February 2021 |
- Byun D, Schere K.L, Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system[J]. 2006 [Google Scholar]
- Foley K.M, Roselle S.J, Appel K.W, et al, Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7[J]. Geoscientific Model Development, 2010, 3(1): 205. [Google Scholar]
- Carruthers D.J, Holroyd R.J, Hunt J C R, et al, UK-ADMS: A new approach to modelling dispersion in the earth's atmospheric boundary layer[J]. Journal of wind engineering and industrial aerodynamics, 1994, 52: 139-153. [Google Scholar]
- McHugh C.A, Carruthers D.J, Edmunds H.A, ADMS–Urban: an air quality management system for traffic, domestic and industrial pollution[J]. International Journal of Environment and Pollution, 1997, 8(3-6): 666-674. [Google Scholar]
- Tartakovsky D, Broday D.M, Stern E, Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain[J]. Environmental Pollution, 2013, 179: 138-145. [Google Scholar]
- Cimorelli A.J, Perry S.G, Venkatram A, et al, AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization[J]. Journal of applied meteorology, 2005, 44(5): 682-693. [Google Scholar]
- Scire J.S, Strimaitis D.G, Yamartino R.J, A user’s guide for the CALPUFF dispersion model[J]. Earth Tech, Inc, 2000, 521: 1-521. [Google Scholar]
- Grell G.A, Peckham S.E, Schmitz R, et al. Fully coupled “online” chemistry within the WRF model[J]. Atmospheric Environment, 2005, 39(37): 6957-6975. [Google Scholar]
- Tie X, Geng F, Peng L, et al, Measurement and modeling of O3 variability in Shanghai, China: Application of the WRF-Chem model[J]. Atmospheric Environment, 2009, 43(28): 4289-4302. [Google Scholar]
- XiaoYun He, Air quality modeling and analysis based on BP neural network [J]. Shandong Industrial Technology,2018(17):239-240. [Google Scholar]
- Jin W, Li Z.J, Wei L.S, et al, The improvements of BP neural network learning algorithm[C]//WCC 2000-ICSP 2000. 2000 5th international conference on signal processing proceedings. 16th world computer congress 2000. IEEE, 2000, 3: 1647-1649. [Google Scholar]
- Jun Yin Han, Adaptive Chaos Fruit fly Optimization Algorithm[J]. Journal of Computer Applications (5): 129-132+149. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.