Open Access
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
Article Number 05003
Number of page(s) 12
Section Computer Science and System Design
Published online 15 February 2021
  1. L. Gutterman, “Next Generation Armament Test Solutions for the Flightline,” 2018 IEEE AUTOTESTCON, National Harbor, MD, 2018, pp. 1-4. [Google Scholar]
  2. L. Leilei, W. Hongxin, X. Yubing, Y. Zhenshan, Y. Chenyi and Y. Fan, “Research and development for landing gear test interface unit for one type aircraft,” CSAA/IET International Conference on Aircraft Utility Systems (AUS 2018), Guiyang, 2018, pp. 216-219. [Google Scholar]
  3. Q. Zeng, B. Jiang and Q. Duan, “Integrated evaluation of hardware and software interfaces for automotive human–machine interaction,” in IET Cyber-Physical Systems: Theory & Applications, vol. 4, no. 3, pp. 214-220, Sep. 2019 [Google Scholar]
  4. Y.X. Zhang, K.Z. Yang, M.C. Song, and M. Yang, “Human error analysis of starting CVCS in soft controls in nuclear power plants,” J. Harbin. Eng. Univ., vol. 37, no. 12, pp. 1653-1657, Nov. 2016 [Google Scholar]
  5. S.Y. Yan, Human factors in weapons and equipment. Harbin, China: Harbin Inst.Techno Press, 2009, pp. 16-20. [Google Scholar]
  6. K.L. Mosier, “Automation, task, and context features: Impacts on pilots' judgments of human-automation interaction,” J. Cogn. Eng. Decis. Mak., vol. 7, no. 4, pp. 377-399, 2013 [Google Scholar]
  7. K.B. Sulliven, “Using neural networks to assess flight deck human-automation interaction,” Reliab. Eng. Syst. Safe, vol. 114, no. 1, pp. 26-35, Jun. 2013 [Google Scholar]
  8. W.Y. Kang et al, “Optimization design of vision display interface in plane cockpit based on mental workload,” J. B. Univ. Aeronaut. Astronaut., vol. 34, no. 7, pp.782¬785, Jul. 2008 [Google Scholar]
  9. X.L. Fan, Q.X. Zhou, Z.Q. Liu, “Principle of plane display interface design based on visual search,” J. B. Univ. Aeronaut. Astronaut., vol. 41, no. 2, pp. 216-221, Jul. 2014 [Google Scholar]
  10. Z.M. Wei, X.R. Wanyan, D.M. Zhuang, “Measurement and evaluation of mental workload for aircraft cockpit display interface,” J. B. Univ. Aeronaut. Astronaut., vol. 40, no. 1, pp. 86-91, May. 2015 [Google Scholar]
  11. H.S. Zhang, D.M. Zhuang, “The Study on pleasure and ergonomics of cockpit interface design,” in Proc. CAID&CD2009, Wenzhou, China, 2009, pp. 1400-1402. [Google Scholar]
  12. A. Murata, N. Furukawa, “Relationships among display features, eye movement characteristics, and reaction time in visual search,” Hum. Factors, vol. 47, no. 3, pp. 598-612, Sept. 2005 [Google Scholar]
  13. T. Lindberg, R. Nasanen, “The effect of icon spacing and size on the speed of icon processing in the human visual system,” Displays, vol. 24, no. 3, pp. 111-120, Oct. 2003 [Google Scholar]
  14. P.V. Schaik, J. Ling, “Design parameters in web pages: frame location and differential background contrast in visual search performance,” Int. J. Ind. Ergonom., vol. 5, no. 3, pp. 459-471, 2001 [Google Scholar]
  15. A. Chalbi et al., “Common Fate for Animated Transitions in Visualization,” in IEEE T. VIS. COMPUT. GR., vol. 26, no. 1, pp. 386-396, Jan. 2020 [Google Scholar]
  16. R. Nasanen, R. Ojanpaa, I. Kojo, “Effect of stimulus contrast on performance and eye movements in visual search,” Vision Res., vol. 41, no. 14, pp. 1817-1824, Jun. 2001 [Google Scholar]
  17. M. Niemela, J. Saarinen. “Visual search for grouped versus ungrouped icons in a computer interface,” Hum. Factors, vol. 42, no. 4, pp. 630-635, Dec. 2000 [Google Scholar]
  18. Y.Q. Liang, P.L. Li, W. Wang, “Design Method of Matching Icon Utilization and Easy Search Rate in GUI,” J. Comput.-Aided Design & Comput. Graphics, vol. 30, no. 1, pp. 155-162, Feb. 2018 [CrossRef] [Google Scholar]
  19. J.M. Wolfe, “Forty years after feature integration theory: An introduction to the special issue in honor of the contributions of Anne Treisman,” Attention. Percept. Psycho., vol. 82, no. 1, pp. 1-6, 2020 [Google Scholar]
  20. N.P. Bichot, S.C. Rao, J.D. Schall, “Continuous processing in macaque frontal cortex during visual search,” Neuropsychologia, vol. 39, no. 9, 2001 [Google Scholar]
  21. J.M. Wolfe, T.S. Horowitz, “What attributes guide the deployment of visual attention and how do they do it?, ” Nat. Rev. Neurosci., vol. 5, no. 6, pp. 495-501, Jun. 2004 [Google Scholar]
  22. H.Y. Wang et al, “Analysis of Cognitive Model in Icon Search Behavior Based on ACT-R Model,” J. Comput.-Aided Design & Comput. Graphics, vol. 28, no. 10, pp. 1740-1749, Oct. 2016 [Google Scholar]
  23. Y.Q. Liang, P.L. Li, W. Wang, “Design Method of Matching Icon Utilization and Easy Search Rate in GUI,” J. Comput.-Aided Design & Comput. Graphics, vol. 30, no. 1, pp. 155-162, Feb. 2018 [CrossRef] [Google Scholar]
  24. Y.T. Jin, J Lv, W, J. Pan, “Layout optimization of virtual interactive interface based on visual attention mechanism,” Comput. Eng. Desig., vol. 41, no. 03, pp. 763-769, Mar. 2020 [Google Scholar]
  25. M.H. Pillips, J.A. Edelman, “The dependence of visual scanning performance on search direction and difficulty,” Vision Res., vol. 48, no. 21, pp. 2184-2192, Sep. 2008 [Google Scholar]
  26. Y. Gong et al., “Effects of graphical panel layout characteristics on human-computer interactive efficiency,” J. Comput.-Aided Design & Comput. Graphics, vol. 24, no. 9, pp. 1145-1150, Sep. 2012 [Google Scholar]
  27. Y. Zhang, N.J. Liang, “A study on the short-term memory of numerals in the different background noise,” Psychol. Sci., no. 4, pp. 789-794, 2006 [Google Scholar]
  28. R.E. Christ. “Review and analysis of color coding research for visual displays,” Hum. Factors, vol. 17, no. 6, pp. 542-570, Dec. 1975 [Google Scholar]
  29. D. Zheng, H. Wang, J. Wang, X. Zhang and W. Chen, “Toward Visibility Guaranteed Visual Servoing Control of Quadrotor UAVs,” in IEEE/ASME Transactions on Mechatronics, vol. 24, no. 3, pp. 1087-1095, June 2019 [Google Scholar]
  30. Y. Gong et al. “Effect of Color Combination on Graphical Symbol Visual Search Efficiency,” J. Comput.-Aided Design & Comput. Graphics, vol. 28, no. 7, pp. 1115-1120, Jul. 2016 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.