Open Access
MATEC Web Conf.
Volume 328, 2020
XXII. International Scientific Conference – The Application of Experimental and Numerical Methods in Fluid Mechanics and Energy 2020 (AEaNMiFMaE-2020)
Article Number 05008
Number of page(s) 10
Section Visualization of Flow
Published online 18 November 2020
  1. Roshko A.: On the development of turbulent wakes from vortex streets. NACA Rep. 1191, pp.801-825 (1955) [Google Scholar]
  2. Procházka P., Uruba V.: Streamwise and spanwise vortical structure merging inside the wake of an inclined flat plate, Mechanics&Industry, 20, Issue 7, (2019) [Google Scholar]
  3. Uruba V.: On 3D instability of wake behind a cylinder, AIP Conference Proceedings, 1745, (2016), Art. no. 020062 [Google Scholar]
  4. Uruba, V., Procházka, P.: The Reynolds number effect on dynamics of the wake behind a circular cylinder. AIP Conference Proceedings, 2189, (2019), Article number 020023 [Google Scholar]
  5. Uruba V.: Decomposition methods in turbulent research, EPJ Web of Conferences, 25 01095 (2012) [CrossRef] [EDP Sciences] [Google Scholar]
  6. Uruba, V.: Energy and Entropy in Turbulence Decompositions, ENTROPY, 21, 2, Article Number: 124, (2019), 18pp. [CrossRef] [Google Scholar]
  7. Uruba V., Pavlík D., Procházka P., Skála V., Kopecký V.: On 3D flow-structures behind an inclined plate, EPJ Web of Conferences, 143, Article number 02137 (2017) [Google Scholar]
  8. Williamson, C.H.K.: Vortex Dynamics in the Cylinder Wake, Annu. Rev. Fluid. Mech. (1996) 28, pp 477-539 [NASA ADS] [CrossRef] [Google Scholar]
  9. White, F.M.: Fluid Mechanics. McGraw Hill, (2015). [Google Scholar]
  10. Uruba V., On 3D instability of wake behind a cylinder, AIP Conference Proceedings, Vol 1745, 30 June 2016, Art. no. 020062 [Google Scholar]
  11. Uruba V., Near Wake Dynamics around a Vibrating Airfoil by Means of PIV and Oscillation Pattern Decomposition at Reynolds Number of 65 000, Journal of Fluids and Structures, 55, pp. 372-383 (2015) [CrossRef] [Google Scholar]
  12. Amor Ch., Pérez J., Schlatter P., Vinuesa R., Le Clainche S., Modeling the turbulent wake behind a wall-mounted square cylinder. Logic Journal of IGPL. 1-11. 10.1093/OUP. (2020) [Google Scholar]
  13. Johnston C.R., Wilson D.J., A Vortex Pair Model for Plume Downwash into Stack Wakes, Atmospheric Environment, Vol. 31, No.1, pp. 13-30 (1997) [Google Scholar]
  14. Krajnovic S., Flow around a tall finite cylinder explored by large eddy simulation, J. Fluid Mech., Vol. 676, 2011, pp. 294-317 [CrossRef] [Google Scholar]
  15. Norberg C., An experimental investigation of the flow around a circular cylinder: influence of aspect ratio, J. Fluid Mech. (1994), vol. 258, pp. 287-316 [CrossRef] [Google Scholar]
  16. Palau-Salvador G., Stoesser T., Frohlich J., Kappler M., & Rodi W., 2010 Large eddy simulations and experiments of flow around finite-height cylinders. Flow Turbul. Combust. 84, pp239–275. [Google Scholar]
  17. Procházka P. and Uruba V., Reynolds Number Effect on Velocity Field and on Coherent Structures behind a Cylinder, AIP Conf. Proc. 2118, 030037-1–030037-4; (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.