Open Access
Issue
MATEC Web Conf.
Volume 327, 2020
2020 4th International Conference on Measurement Instrumentation and Electronics (ICMIE 2020)
Article Number 02001
Number of page(s) 5
Section Electronic Materials and Characteristics Analysis
DOI https://doi.org/10.1051/matecconf/202032702001
Published online 06 November 2020
  1. C. A. Williamson and L. N. McLin, “Nominal ocular dazzle distance (NOOD),” Appl. Opt. 54, 1564–1572 (2015). [CrossRef] [Google Scholar]
  2. LaserPointerSafety.com, “US: FAA-reported laser incidents up significantly in 1st half of 2015,” July 2015 [Google Scholar]
  3. CIE Equations for Disability Glare Vienna: Commission Internationale de I’Eclairage (CIE, 2002). [Google Scholar]
  4. J. J. Vos, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clin. Exp. Optom. 86, 363–370 (2003). [CrossRef] [Google Scholar]
  5. L. N. McLin, P. A. Smith, L. E. Barnes, J. R. Dykes, T. Kuyk, B. J. Novar, P. V. Garcia, and C. A. Williamson, “Scaling laser disability glare functions with ‘k’ factors to predict dazzle,” in International Laser Safety Conference, Orlando, USA, 21 March 2013 (Laser Institute of America, 2013). [Google Scholar]
  6. M. Stevenson, “Optical software: which program is right for me?” Opt. Laser Eur. 141, 29–32 (2006). [Google Scholar]
  7. T. van den Berg and K. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vis. Res. 34(11), 1453–1456 (1994). [CrossRef] [Google Scholar]
  8. M.H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications (Springer, 2007). [CrossRef] [Google Scholar]
  9. V. Tuchin, “Light scattering study of tissues,” Phys.–Uspekhi 40, 495–515 (1997). [CrossRef] [Google Scholar]
  10. J. Doutch, A. Quantock, V. Smith, and K. Meek, “Light transmission in the human cornea as a function of position across the ocular surface: theoretical and experimental aspects,” Biophys. J. 95, 5092–5099 (2008). [CrossRef] [Google Scholar]
  11. T. van den Berg and K. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vis. Res. 34(11), 1453–1456 (1994). [CrossRef] [Google Scholar]
  12. M. H. Niemz, Laser—Tissue Interactions: Fundamentals and Applications (Springer, 2007). [Google Scholar]
  13. D. Sardar, B. Yust, F. Barrera, L. Mimun, and A. Tsin, “Optical absorption and scattering of bovine cornea, lens and retina in the visible region,” Lasers Med. Sci. 24, 839–847 (2009). [CrossRef] [Google Scholar]
  14. D. Sardar, R. Yow, G. Swanland, R. Thomas, and A. Tsin, Optical Properties of Ocular Tissues in the Near Infrared Region, Human Effectiveness Directorate, Directed Energy Bioeffects Division (Air Force Research Laboratory, 2005). [Google Scholar]
  15. B.Yust, L.Mimun, and D. Sardar, “Optical absorption and scattering of bovine cornea, lens, and retina in the near-infrared region,” Lasers Med. Sci. 27, 413–422 (2012). [CrossRef] [Google Scholar]
  16. J. Artigas, A. Filipe, A. Navea, A. Fandião, and C. Artigas, “Spectral transmission of the human crystalline lens in adult and elderly persons: color and total transmission of visible light,” Invest. Ophtalmol. Visual Sci. 53, 4076–4084 (2012). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.