Open Access
Issue |
MATEC Web Conf.
Volume 326, 2020
The 17th International Conference on Aluminium Alloys 2020 (ICAA17)
|
|
---|---|---|
Article Number | 08005 | |
Number of page(s) | 8 | |
Section | New directions in Alloy and Process Development II: Joining, Severe Plastic Deformation, Emerging Processes | |
DOI | https://doi.org/10.1051/matecconf/202032608005 | |
Published online | 05 November 2020 |
- Ahn, J., Chen, L., He, E., Dear, J. P. and Davies, C. M. (2018) ‘Optimisation of Process Parameters and Weld Shape of High Power Yb-Fibre Laser Welded 2024-T3 Aluminium Alloy’, Journal of Manufacturing Processes, 34 (April),pp. 70–85. DOI: 10.1016/j.jmapro.2018.05.028. [CrossRef] [Google Scholar]
- Alshaer, A. W., Li, L. and Mistry, A. (2017) ‘Effect of filler wire properties on porosity formation in laser welding of AC-170PX aluminium alloy for lightweight automotive component manufacture’, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231 (6),pp. 994–1006. DOI: https://doi.org/10.1177/0954405415578584. [CrossRef] [Google Scholar]
- Ambriz, R. R. and Jaramillo, D. (2014) ‘Mechanical Behavior of Precipitation Hardened Aluminum Alloys Welds’, in Monteiro, W. A. (ed.) Light Metal Alloys Applications. Intech Open Access, pp. 35–59. doi: 10.5772/58418. [Google Scholar]
- Andersen, S. J., Marioara, C. D., Friis, J., Wenner, S. and Holmestad, R. (2018) ‘Precipitates in Aluminium Alloys’, Advances in Physics: X, 3 (1),pp. 790–813. DOI: 10.1080/23746149.2018.1479984. [Google Scholar]
- Arora, K. S., Pandey, S., Schaper, M. and Kumar, R. (2010) ‘Microstructure Evolution during Friction Stir Welding of Aluminum Alloy AA2219ʹ, Journal of Materials Science and Technology, 26 (8), pp. 747–753. DOI: 10.1016/S1005-0302(10)60118-1. [CrossRef] [Google Scholar]
- Fridlyander, I. N., Sister, V. G., Grushko, O. E., Berstenev, V. V., Sheveleva, L. M. and Ivanova, L. A. (2002) ‘Aluminum alloys: Promising materials in the automotive industry’, Metal Science and Heat Treatment, 44 (9–10),pp. 365–370. DOI: 10.1023/A:1021901715578. [CrossRef] [Google Scholar]
- Hong, K. M. and Shin, Y. C. (2017) ‘Prospects of laser welding technology in the automotive industry: A review’, Journal of Materials Processing Technology. Elsevier B.V., 245, pp. 46–69. DOI: 10.1016/j.jmatprotec.2017.02.008. [CrossRef] [Google Scholar]
- Jordan, A. (2016) Microstructure Characterisation and Corrosion Properties of Two Recycled Aluminium Alloys AA5050 and AA5011. PhD Thesis. The University of Manchester. [Google Scholar]
- Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., De Smet, P., Haszler, A. and Vieregge, A. (2000) ‘Recent development in aluminium alloys for the automotive industry’, Materials Science and Engineering: A, 280 (1),pp. 37–49. DOI: 10.1016/S0921-5093(99)00653-X. [Google Scholar]
- Mishra, R. S. and Sidhar, H. (2017) ‘FSW of Al – Cu and Al – Cu – Mg Alloys’, in Gifford, C. (ed.) Friction Stir Welding of 2XXX Aluminum Alloys Including Al - Li Alloys. Oxford, UK: Butterworth-Heinemann, pp. 47–77. DOI: 10.1016/b978-0-12-805368-3.00004-2. [Google Scholar]
- Nascente, P. A. P., Bolfarini, C., Benassi, C. L., Alcȃntara, N. G. and Santos, J. F. (2002) ‘Surface and Microstructural Characterisation of Laser Beam Welds in an Aluminum Alloy’, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 20 (4),pp. 1416–1419. DOI: 10.1116/1.1487868. [Google Scholar]
- Niu, L. Q., Li, X.-Y., Zhang, L., Liang, X.-B. and Li, M. (2017) ‘Correlation between Microstructure and Mechanical Properties of 2219-T8 Aluminum Alloy Joints by VPTIG Welding’, Acta Metallurgica Sinica (English Letters), 30 (5),pp. 438-446. DOI: 10.1007/s40195-016-0516-9. [CrossRef] [Google Scholar]
- Oguz, B. (1990) ‘Aluminium Alloys’, in Welding of the Non-Ferrous Metals. Oerlikon. [Google Scholar]
- Sakurai, T. (2008) ‘The Latest Trends in Aluminum Alloy Sheets for Automotive Body Panels’, KOBELCO Technology Review, 28, pp. 22–28. [Google Scholar]
- Sánchez-Amaya, J. M., Boukha, Z., Amaya-Vázquez, M. R. and Botana, F. J. (2012) ‘Weldability of Aluminum Alloys with High-Power Diode Laser’, Welding Journal, pp. 155s-161s. Available at: http://files.aws.org/wj/supplement/WJ_2012_05_s155.pdf (Accessed: 2 May 2019). [Google Scholar]
- Tsirkas, S. A., Papanikos, P. and Kermanidis, T. (2003) ‘Numerical simulation of the laser welding process in butt-joint specimens’, Journal of Materials Processing Technology, 134 (1),pp. 59–69. DOI: 10.1016/S0924-0136(02)00921-4. [CrossRef] [Google Scholar]
- Zervaki, A. D. and Haidemenopoulos, G. N. (2007) ‘Computational kinetics simulation of the dissolution and coarsening in the HAZ during laser welding of 6061-T6 Al-alloy’, Welding Journal, 86 (8),pp. 211s–221s. [Google Scholar]
- Zhang, L., Li, X., Nie, Z., Huang, H. and Niu, L. (2016) ‘Comparison of microstructure and mechanical properties of TIG and laser welding joints of a new Al-Zn-Mg-Cu alloy’, Materials and Design. Elsevier Ltd, 92, pp. 880–887. DOI: 10.1016/j.matdes.2015.12.117. [CrossRef] [Google Scholar]
- Zhang, L., Li, X., Nie, Z., Huang, H. and Sun, J. (2015) ‘Microstructure and Mechanical Properties of a New Al-Zn-Mg-Cu Alloy Joints Welded by Laser Beam’, Materials & Design, 83, pp. 451–458. DOI: 10.1016/j.matdes.2015.06.070. [CrossRef] [Google Scholar]
- Zhao, N., Yang, Y., Han, M., Luo, X., Feng, G. and Zhang, R. (2012) ‘Finite element analysis of pressure on 2024 aluminum alloy created during restricting expansion-deformation heat-treatment’, Transactions of Nonferrous Metals Society of China (English Edition), 22 (9),pp. 2226–2232. DOI: 10.1016/S1003-6326(11)61453-2. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.