Open Access
Issue |
MATEC Web Conf.
Volume 326, 2020
The 17th International Conference on Aluminium Alloys 2020 (ICAA17)
|
|
---|---|---|
Article Number | 07003 | |
Number of page(s) | 10 | |
Section | New Directions in Alloy and Process Development I: Additive Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/202032607003 | |
Published online | 05 November 2020 |
- T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, W. Zhang, Progress in Materials Science 92, 112 (2018) [CrossRef] [Google Scholar]
- E. Olakami, R. Cochrane, K. Dalgarno, Progress in Materials Science 74, 401 (2015) [CrossRef] [Google Scholar]
- S. Beretta, S. Romano, International Journal of Fatigue 94, 178 (2017) [CrossRef] [Google Scholar]
- D. Buchbinder, Tech. Rep. 01RIO639A-D, Bundesministerium für Bildung und Forschung (2010) [Google Scholar]
- N. Aboulkhair, N. Everitt, I. Ashcroft, C. Tuck, Additive Manufacturing 1-4, 77 (2014) [CrossRef] [Google Scholar]
- N. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, Progress in Materials Science 106, 100578 (2019) [CrossRef] [Google Scholar]
- E. Brandl, U. Heckenberger, V. Holzinger, D. Buchinder, Materials and Design 34, 159 (2012) [CrossRef] [Google Scholar]
- N. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N. Everitt, Materials and Design 104, 174 (2016) [CrossRef] [Google Scholar]
- S. Romano, S. Beretta, S. Foletti, LCF response of AlSi10Mg obtained by Additive Manufacturing, in Eighth International Conference on Low Cycle Fatigue (LCF8), Dresden (2017), pp. 53–58 [Google Scholar]
- N. Uzan, S. Ramati, R. Shneck, N. Frage, O. Yeheskel, Additive Manufacturing 21, 458 (2018) [Google Scholar]
- S. Romano, L. Patriarca, S. Foletti, S. Beretta, International Journal of Fatigue 117, 47 (2018) [CrossRef] [Google Scholar]
- B. Torries, R. Shrestha, A. Imandoust, N. Sham- saei, Fatigue Life Prediction of Additively Manufactured Metallic Materials Using a Fracture Mechanics Approach, in Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium (2018), pp. 11811190 [Google Scholar]
- R. Shrestha, J. Simsiriwong, N. Shamsaei, Additive Manufacturing 28, 23 (2019) [Google Scholar]
- Y. Murakami, Metal fatigue: Effects of Small Defects and Nonmetallic Inclusions, 1stedn. (Academic Press, 2002) [Google Scholar]
- S. Romano, A. Brandäo, J. Gumpinger, M. Gschweitl, S. Beretta, Materials & Design 131, 32 (2017) [Google Scholar]
- S. Romano, A. Brückner-Foit, A. Brandäo, J. Gumpinger, T. Ghidini, S. Beretta, Engineering Fracture Mechanics 187, 165 (2018) [Google Scholar]
- EOS GmbH - Electro Optical Systems, Materialdatenblatt EOS Aluminium AlSi10Mg (2014), downloaded 2017-02-08 [Google Scholar]
- B. Flaig, K. Lang, Tech. Rep. 567, Forschungsvereinigung Verbrennungskraftmaschinen e.V. (1994) [Google Scholar]
- I. Maskery, N. Aboulkhair, M. Corfield, C. Tuck, A. Clare, R. Leach, R. Wildman, I. Ashcroft, R. Hague, Materials Characterization 111, 193 (2016) [Google Scholar]
- U. Tradowsky, J. White, R. Ward, N. Read, W. Reimers, M. Attallah, Materials and Design 105, 212 (2016) [Google Scholar]
- N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, M. Kobashi, Materials Science & Engineering A 704, 218 (2017) [Google Scholar]
- A. Maamoun, M. Elbestawi, G. Dosbaeva, S.C. Veld- huis, Additive Manufacturing 21, 234 (2018) [CrossRef] [Google Scholar]
- X. Cao, J. Campbell, Metallurgical and Materials Transactions A 35, 1425 (2004) [Google Scholar]
- S. Belmares-Perales, A. Zaldivar-Cadena, Materials Science and Engineering B 174, 191 (2010) [Google Scholar]
- H. Ammar, A. Samuel, F. Samuel, Materials Science and Engineering A 473, 65 (2008) [CrossRef] [Google Scholar]
- A. Samuel, F. Samuel, Metallurgical and Materials Transactions A 26, 2359 (1995) [CrossRef] [Google Scholar]
- P. Huter, S. Oberfrank, F. Grün, B. Stauder, International Journal of Fatigue 88, 142 (2016) [CrossRef] [Google Scholar]
- D. Zhang, Ph.D. thesis, RWTH Aachen (2004) [Google Scholar]
- International Standard ISO 12106, Metallic materials - fatigue testing - Axial-strain-controlled method (2003) [Google Scholar]
- A. Emami, S. Begum, D. Chen, T. Skszek, X. Niu, Y. Zhang, F. Gabbianelli, Materials Science and Engineering A 516, 31 (2009) [Google Scholar]
- S. Michelfeit, Ph.D. thesis, Technische Universität Darmstadt, Fachbereich Maschinenbau (2012) [Google Scholar]
- J. Jordon, M. Horstemeyer, N. Yang, J. Major, K. Gall, J. Fan, D. McDowell, Metallurgical and Materials Transactions A 41, 356 (2010) [Google Scholar]
- D. McDowell, K. Gall, M. Horstemeyer, J. Fan, Engineering Fracture Mechanics 70, 49 (2003) [Google Scholar]
- M. Song, Y. Kong, M. Ran, Y. She, International Journal of Fatigue 33, 1600 (2011) [CrossRef] [Google Scholar]
- E. Natesan, S. Eriksson, J. Ahlström, C. Persson, Materials 12, 3033 (2019) [CrossRef] [Google Scholar]
- J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, Nature methods 9, 676 (2012) [Google Scholar]
- C. Fischer, C. Schweizer, S. Mittag, T. Seifert, K. Kuhlen, Tech. Rep. 1188, Forschungsvereinigung Verbrennungskraftmaschinen e.V. (2019) [Google Scholar]
- W. Ramberg, W. Osgood, Tech. Rep. Technical Note No. 902, National Advisory Committee For Aeronautics, Washington DC (1943) [Google Scholar]
- C. Shih, Tech. Rep. MRL E-147, Providence, R.I.: Division of Engineering, Brown University (1983) [Google Scholar]
- C. Schweizer, Ph.D. thesis, Karlsruher Institut für Technologie (KIT), Fakultät für Maschinenbau (2013) [Google Scholar]
- H. Heitmann, H. Vehoff, P. Neumann, in Fracture 84, edited by S. Valluri, D. Taplin, P.R. Rao, J. Knott, R. Dubey (Pergamon, 1984), pp. 3599–3606 [Google Scholar]
- M. Metzger, B. Nieweg, C. Schweizer, T. Seifert, International Journal of Fatigue 53, 58 (2012) [Google Scholar]
- W. Schmitt, R. Mohrmann, H. Riedel, A. Di- etsche, A. Fischersworring-Bunk, in Fatigue 2002 - Proceedings of the Eighth International Fatigue Congress, edited by A. Blom (Warley, West Midlands: EMAS, 2002), pp. 781–788 [Google Scholar]
- J.C. Newman Jr., International Journal of Fracture 24, 131 (1984) [Google Scholar]
- H. Tada, P. Paris, G. Irwin, The Stress Analysis of Cracks Handbook, 3rd edn. (ASME Press, 2000) [Google Scholar]
- M. He, J. Hutchinson, J. Appl. Mech 48, 830 (1981) [Google Scholar]
- H. Riedel, Fracture at high temperatures, 1st edn. (Springer-Verlag Berlin Heidelberg, 1987) [CrossRef] [Google Scholar]
- C. Schweizer, T. Seifert, B. Nieweg, P. von Hartrott, H. Riedel, International Journal of Fatigue 33, 194 (2011) [Google Scholar]
- C. Chauvot, M. Sester, Computational Materials Science 19, 87 (2000) [Google Scholar]
- G. Maier, H. Riedel, T. Seifert, J. Klöwer, R. Mohrmann, Time and temperature dependent cyclic plasticity and fatigue crack growth of the nickel-base Alloy617B - experiments and models, in Euro Superalloys 2010 (Trans Tech Publications Ltd, 2011), Vol. 278 of Advanced Materials Research, pp. 369–374 [Google Scholar]
- T. Hanemann, Analyse der Mikrostruktur und Simulation der mechanischen Eigenschaften von generativ gefertigtem AlSi10Mg (2017), Seminar paper, Karlsruher Institut für Technologie (KIT) [Google Scholar]
- S. Rahmati, E. Vahabli, Int J Adv Manuf Technol 79, 823 (2015) [Google Scholar]
- A. Boschetto, L. Bottini, F. Veniali, Journal of Materials Processing Technology 241, 154 (2017) [Google Scholar]
- C. Qiu, C. Panwisawas, M. Ward, H. Basoalto, J. Brooks,M. Attallah, ActaMaterialia 96, 72 (2015) [Google Scholar]
- N. Dowling, in Cyclic stress-strain and plastic deformation aspects of fatigue crack growth (ASTMInternational, West Conshohocken, 1977), Vol. STP637- EB, pp. 97–121 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.