Open Access
Issue |
MATEC Web Conf.
Volume 309, 2020
2019 International Conference on Computer Science Communication and Network Security (CSCNS2019)
|
|
---|---|---|
Article Number | 03028 | |
Number of page(s) | 8 | |
Section | Smart Algorithms and Recognition | |
DOI | https://doi.org/10.1051/matecconf/202030903028 | |
Published online | 04 March 2020 |
- L. Itti. Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans. Image Process, 1304–1318(2014). [Google Scholar]
- M. Feng, H. Lu, E. Ding. Attentive Feedback Network for Boundary-Aware Salient Object Detection. Internaltional Conference on Computer Vision and Pattern Recogintion 1623–1632(2019). [Google Scholar]
- L. Wang, H. Lu, Y. Wang, M. Feng, D. Wang, B. Yin, X. Ruan. Learning to detect salient objects with image-level supervision. Internaltional Conference on Computer Vision and Pattern Recogintion, 3796–3805(2017). [Google Scholar]
- Q. Yan, L. Xu, J. Shi, J. Jia. Hierarchical saliency detection. Internaltional Conference on Computer Vision and Pattern Recogintion, 1155–1162(2013). [Google Scholar]
- Y. Li, X. Hou, C. Koch, J. M. Rehg, A. L. Yuille. The secrets of salient object segmentation. Internaltional Conference on Computer Vision and Pattern Recogintion, 280–287(2014). [Google Scholar]
- C. Yang, L. Zhang, H. Lu, X. Ruan, M.-H. Yang. Saliency detection via graph-based manifold ranking. Internaltional Conference on Computer Vision and Pattern Recogintion, 3166–3173(2013). [Google Scholar]
- G. Li, Y. Yu. Visual saliency based on multiscale deep features. Internaltional Conference on Computer Vision and Pattern Recogintion, 5455–5463(2015). [Google Scholar]
- V. Movahedi and J. H. Elder, “Design and perceptual validation of performance measures for salient object segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 2010. [Google Scholar]
- R. Zhao, W. Ouyang, H. Li, X. Wang. Saliency detection by multi-context deep learning. Internaltional Conference on Computer Vision and Pattern Recogintion, 1265–1274(2015). [Google Scholar]
- X. Li, L. Zhao, L. Wei, M.-H. Yang, F. Wu, Y. Zhuang, H. Ling, and J. Wang, “Deepsaliency: Multi-task deep neural network model for salient object detection,” IEEE Trans. Image Process., vol. 25,no. 8, pp. 3919–3930(2016). [CrossRef] [Google Scholar]
- P. Hu, B. Shuai, J. Liu, G. Wang. Deep level sets for salient object detection. Internal- tional Conference on Computer Vision and Pattern Recogintion, 540–549(2017). [Google Scholar]
- D. Zhang, J. Han, and Y. Zhang, “Supervision by fusion: Towards unsupervised learn- ing of deep salient object detector,” in Proc. IEEE Int. Conf. Comput. Vis., vol. 1, no. 2, 2017, p. 3. [Google Scholar]
- M. Amirul Islam, M. Kalash, and N. D. B. Bruce, “Revisiting salient object detection: Simultaneous detection, ranking, and subitizing of multiple salient objects,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2018). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.