Open Access
MATEC Web Conf.
Volume 309, 2020
2019 International Conference on Computer Science Communication and Network Security (CSCNS2019)
Article Number 03017
Number of page(s) 7
Section Smart Algorithms and Recognition
Published online 04 March 2020
  1. N. Zhou, A. Zhang, F. Zheng, Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing, J. Optics & Laser Technology. 62 (2014) 152–160. [CrossRef] [Google Scholar]
  2. L. Gong, K. Qiu, C. Deng, An image compression and encryption algorithm based on chaotic system and compressive sensing, J. Optics & Laser Technology. 115 (2019) 257–267. [CrossRef] [Google Scholar]
  3. J. Chen, Y. Zhang, L. Qi, Exploiting chaos-based compressed sensing and cryptographic algorithm for image encryption and compression, J. Optics & Laser Technology. 99 (2018) 238–248. [CrossRef] [Google Scholar]
  4. X. Chai, X. Zheng, Z. Gan, An image encryption algorithm based on chaotic system and compressive sensing, J. Signal Processing. 148 (2018) 124–144. [CrossRef] [Google Scholar]
  5. Q. Xu, K. Sun, C. Cao, A fast image encryption algorithm based on compressive sensing and hyperchaotic map, J. Optics and Lasers in Engineering. 121 (2019) 203–2. [CrossRef] [Google Scholar]
  6. E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, J. arXiv preprint math/0409186 (2004). [Google Scholar]
  7. R. Wolke, H. Schwetlick, Iteratively reweighted least squares: algorithms, convergence analysis, and numerical comparisons, J. SIAM journal on scientific and statistical computing. 9 (1988) 907–921. [CrossRef] [Google Scholar]
  8. X. Wu, K. Wang, X. Wang, Lossless chaotic color image cryptosystem based on DNA encryption and entropy, J. Nonlinear Dynamics. 90 (2017) 855–875. [CrossRef] [Google Scholar]
  9. K. Engan, S. O. Aase, J. H. Husoy, Method of optimal directions for frame design[C]//1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, Proceedings, ICASSP99 (Cat. No. 99CH36258), IEEE. 5 (1999) 2443–2446. [Google Scholar]
  10. Q. Huynh-Thu, M. Ghanbari, Scope of validity of PSNR in image/video quality assessment. J. Electronics letters. 44 (2008) 800–801. [CrossRef] [Google Scholar]
  11. L. Yaru, W. Jianhua, Image encryption based on compressive sensing and variable parameter chaotic mapping, J. Journal of Optoelectronics Laser, Tianjin. 26 (2015) 605–610. [Google Scholar]
  12. N. Zhou, A. Zhang, J. Wu, Novel hybrid image compression-encryption algorithm based on compressive sensing, J. Optik-International Journal for Light and Electron Optics. 125 (2014) 5075–5080. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.