Open Access
MATEC Web Conf.
Volume 308, 2020
2019 8th International Conference on Transportation and Traffic Engineering (ICTTE 2019)
Article Number 01004
Number of page(s) 8
Section Traffic Data Analysis and Traffic Dispatching
Published online 12 February 2020
  1. Pas, E.I., & Koppelman, F.S. (1987). An examination of the determinants of day-to-day variability in individuals' urban travel behavior. Transportation, 141, 3-20. [Google Scholar]
  2. Axhausen, K.W., Zimmermann, A., SchöNfelder, S., Guido Rindsfüser, & Haupt, T. (2002). Observing the rhythms of daily life: a six-week travel diary. Transportation, 292, 95-124. [Google Scholar]
  3. Murakami, E., & Wagner, D.P.A. (1999). Can using global positioning system (GPS) improve trip reporting?. Transportation Research Part C Emerging Technologies, 7 (2-3), 149-165. [CrossRef] [Google Scholar]
  4. Asakura, Y. , & Hato, E. (2004). Tracking survey for individual travel behavior using mobile communication instruments. Transportation Research Part C Emerging Technologies, 123, 273-291. [CrossRef] [Google Scholar]
  5. Martin Trépanier, Tranchant, N., & Chapleau, R. (2007). Individual trip destination estimation in a transit smart card automated fare collection system. Intellectual Transportation System. 111, 1-14 [CrossRef] [Google Scholar]
  6. Asakura, Y., Iryo, T., Nakajima, Y. , & Kusakabe, T. (2012). Estimation of behavioral change of railway passengers using smart card data. Public Transport, 41, 1-16. [CrossRef] [Google Scholar]
  7. Xiaolei, M.A., WU, YaoJan, Wang, Y., Feng, C., & Liu, J. (2013). Mining smart card data for transit riders' travel patterns. Transportation Research Part C Emerging Technologies, 36, 1-12. [Google Scholar]
  8. Gan, Z. , Yang, M., Feng, T., & Timmermans, H. (2018). Understanding urban mobility patterns from a spatiotemporal perspective: daily ridership profiles of metro stations. the [Google Scholar]
  9. Hanson, S., & Huff, J. (1986). Classification issues in the analysis of complex travel behavior. Transportation, 133, 271-293. [CrossRef] [Google Scholar]
  10. Zhong, C., Batty, M., Manley, E., Wang, J., Wang, Z. , & Chen, F., et al. (2016). Variability in regularity: mining temporal mobility patterns in London, Singapore, and Beijing using smart-card data. PLOS ONE, 112. [Google Scholar]
  11. Primerano, F., Taylor, M.A.P. , Pitaksringkarn, L., & Tisato, P. (2008). Defining and understanding trip chaining behavior. Transportation, 351, 55-72. [CrossRef] [Google Scholar]
  12. Saneinejad, S., Roorda, M.J., & Kennedy, C. (2012). Modeling the impact of weather conditions on active transportation travel behavior. Transportation Research Part D: Transport and Environment, 172, 129-137. [CrossRef] [Google Scholar]
  13. Agostini, C.A., & Gastón A. Palmucci. (2008). The anticipated capitalization effect of a new metro line on housing prices. Fiscal Studies, 29. [CrossRef] [Google Scholar]
  14. Dorantes, L., Paez, A., & Vassallo, J. (2011). Analysis of house prices to assess economic impacts of new public transport infrastructure. Transportation Research Record: Journal of the Transportation Research Board, 2245, 131-139. [CrossRef] [Google Scholar]
  15. Mejia-Dorantes, L., Paez, A., & Vassallo, J.M. . (2012). Transportation infrastructure impacts on firm location: the effect of a new metro line in the suburbs of Madrid. Journal of Transport Geography, 22, 236-250. [CrossRef] [Google Scholar]
  16. Vuk, G.. (2005). Transport impacts of the Copenhagen metro. Journal of Transport Geography, 133, 223-233. [CrossRef] [Google Scholar]
  17. Golias, J.C.. (2002). Analysis of traffic corridor impacts from the introduction of the new Athens Metro system. Journal of Transport Geography, 102, 0-97. [CrossRef] [Google Scholar]
  18. Xiao, F., & Yu, G. (2018). Impact of a new metro line: analysis of metro passenger flow and travel time based on smart card data. Journal of Advanced Transportation, 2018, 1-13. [CrossRef] [Google Scholar]
  19. Wang, Z.. (2014). Passenger Flow Prediction Model of the Newly Constructed Urban Rail Transit Line. 2014 International Conference of Logistics Engineering and Management. [Google Scholar]
  20. Liu, S., Yao, E., & Li, B. . (2018). Exploring urban rail transit station-level ridership growth with network expansion. Transportation Research Part D Transport and Environment. 73, 391-402 [CrossRef] [Google Scholar]
  21. B. Wang: Theory and Application for Urban Rail Transit Network Operation (China Communication Press, China, 2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.