Open Access
MATEC Web Conf.
Volume 307, 2020
International Conference on Materials & Energy (ICOME’17 and ICOME’18)
Article Number 01009
Number of page(s) 7
Published online 10 February 2020
  1. C.K. Aidun, and J.R. Clausen, Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech, 42, pp. 439-472 (2010). [CrossRef] [Google Scholar]
  2. W.H. Zhang, Z.H. Chai, B.C. Shi B.C, Z.L. Guo, Lattice Boltzmann study of flow and mixing characteristics of two-dimensional confined impinging streams with uniform and non-uniform inlet jets, Comput.Math.Appl, 65, pp. 638-648 (2013). [CrossRef] [MathSciNet] [Google Scholar]
  3. Q. Liu, Y.L. He, Q. Li, W.Q. Tao, A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media, Int. J. Heat Mass Transf, 73, pp. 761-781 (2014). [CrossRef] [Google Scholar]
  4. Z. Tao and D. Che, Double MRT thermal lattice Boltzmann simulation for MHD natural convection of nanofluids in an inclined cavity with four square heat sources (2016). [Google Scholar]
  5. Y.T. Yang, S.C. Chang, C.S. Chiou, Lattice Boltzmann method and large-eddy simulation for turbulent impinging jet cooling. Int. J. Heat Mass Transf, 61, pp. 543-554. [CrossRef] [Google Scholar]
  6. C.Y. Peng, Shu and Y.T. Chew, Simplified thermal lattice Boltzmann modelfor incompressible thermal flows, Phys. Rev. E 68 pp. 026-701, (2003) [Google Scholar]
  7. Y. Ould-amer, S. Chikh,, G. Bouhadef, Lariat, Forced convection cooling Flow enhancement by using porous materials, Int. J. Heat Fluid Flow, pp, 251-258. [Google Scholar]
  8. Z. Guo and T.S. Zhao, Lattice Boltzmann model for incompressible flowsthrough porous media, Phys. Rev. 66, pp, 306-304 (2002). [Google Scholar]
  9. H. Shokouhmand, F. Jam M.R. Salimpou, Simulation of laminar flowand convective heat transfer in conduits filled with porous media using Lattice Boltzmann MethodInt. Communications in Heat and Mass Transf, 36, pp, 378-384 (2009). [CrossRef] [Google Scholar]
  10. M. El-Ganaoui and R. Djebali, Aptitude of a lattice Boltzmann method for evaluating transitional thresholds for low Prandtl number .ows in enclosures, Comptes Rendus Mécanique, 338, 85-96 (2010). [Google Scholar]
  11. D. Mouhtadi,A. Amahmid, M. Hasnaoui, R. Bennacer, Natural convection in a horizontal channel provided with heat generating blocks:Discussion of the isothermal blocks validity, Energy Conversion and Management, 53 45–54 (2012) [Google Scholar]
  12. G. De vahl davis, natural convection of air in a square cavity a bench mark numerical solution, international journal for numerical methods in fluids, vol. 3, 249-264 (1983). [Google Scholar]
  13. T. Seta, E. Takegoshi, K. Okui, Lattice Boltzmann simulation of natural convection in porous media, Math.Comput.Sim, 72, pp. 195-200 (2006). [Google Scholar]
  14. Z. Guo T.S. Zhao, A lattice Boltzmann model for convection heat transfer in porous media. Numer. Heat Transfer B 47:157–177 (2005). [CrossRef] [Google Scholar]
  15. C.T. Hsu, P. Cheng, Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer 33:1587–1597 (1990). [CrossRef] [Google Scholar]
  16. C. Beckermann, R. Viskanta, Natural convection solid/liquid phase change in porous media, Int. J. Heat Mass Transfer 31:35–46 (1988). [CrossRef] [Google Scholar]
  17. W.J. Chang, D.F. Yang, Natural convection for the melting of ice in porous media in a rectangular enclosure, Int. J. Heat Mass Transfer 39:2335–2348 (1996). [Google Scholar]
  18. A. Mezrhab, M. Bouzidi, P. Lallemand, Hybrid lattice Boltzmann finite-difference simulation of convective flows, Computer and Fluids, 33, pp, 623-641 (2004). [Google Scholar]
  19. A.A. Alamyane, A.A. Mohamad, Simulation of forced convection in a channel with extended surfaces by the lattice Boltzmann method, Computers and Mathematics with Applications, 59, 2421-2430 (2010). [CrossRef] [Google Scholar]
  20. H.J. Sung, S.Y. Kim, Forced convection from an isolated heat source in a channel with porous medium, Int. J. Heat and Fluid Flow, 16 (1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.