Open Access
Issue
MATEC Web Conf.
Volume 304, 2019
9th EASN International Conference on “Innovation in Aviation & Space”
Article Number 03013
Number of page(s) 8
Section Propulsion & Engines
DOI https://doi.org/10.1051/matecconf/201930403013
Published online 17 December 2019
  1. R. Boyce, S. Gerard, and A. Paull. The hyshot scramjet flight experiment, (2011). [Google Scholar]
  2. D. Freeman, R. Charles, L. Rausch, and C. Larry. The nasa hyper–x program, (1997). [Google Scholar]
  3. J. Steelant. Atllas: Aerothermal loaded material investigations for high–speed vehicles. International Space Planes and Hypersonic Systems and Technologies Conference, 2582, (2008). [Google Scholar]
  4. J. Steelant, R. Varvill, C. Walton, S. Defoort, K. Hannemann, and M. Marini. Achievements obtained for sustained hypersonic flight within the Lapcat–II project. AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 3677, (2015). [Google Scholar]
  5. S. O’Byrne, M. Doolan, S. Olsen, and A. Houwing. Measurement and imaging of supersonic combustion in a model scramjet engine. Shock Waves, (1999). [Google Scholar]
  6. Jiri Blazek. Computational fluid dynamics: principles and applications. Butterworth–Heinemann, (2015). [Google Scholar]
  7. J. Hoste, V. Casseau, M. Fossati, I. Taylor, and R. Gollan. Numerical modeling and simulation of supersonic flows in propulsion systems by open–source solvers. AIAA International Space Planes and Hypersonic Technologies Conference, 2411, (2017). [Google Scholar]
  8. M. Liou. A generalized procedure for constructing an upwind–based tvd scheme. AIAAAerospace Sciences Meeting, 355, (1987). [Google Scholar]
  9. M. Pandolfi and D. D’Ambrosio. Numerical instabilities in upwind methods: analysis and cures for the carbuncle phenomenon. Journal of Computational Physics, 166, (2001). [Google Scholar]
  10. E. Toro. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer, (2013). [Google Scholar]
  11. S. Schmidt, I. Sezal, and G. Schnerr. Compressible simulation of high–speed hydrodynamics with phase change. (2006). [Google Scholar]
  12. H. Farrokhfal and A.Pishevar. Optimization of airfoils for mini– mum pitching moment and compressibility drag coefficients. Journal of Aerospace Technology and Management, 6, (2014). [Google Scholar]
  13. H. Smith. The flow field and heat transfer downstream of a rearward facing step in supersonic flow. Technical report, Aerospace Research Labs Wright–Patterson, (1967). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.