Open Access
Issue
MATEC Web Conf.
Volume 294, 2019
2nd International Scientific and Practical Conference “Energy-Optimal Technologies, Logistic and Safety on Transport” (EOT-2019)
Article Number 01009
Number of page(s) 7
Section Energy-Optimized Technologies, Energy Efficiency and Energy Management on Transport
DOI https://doi.org/10.1051/matecconf/201929401009
Published online 16 October 2019
  1. I.O. Baranov. Improving the highly loaded coal-water slurry fuel transportation efficiency in the hydro-transport systems of industrial enterprises. Abstract thesis for degree candidate of technical sciences. (Doctor of Philosophy), speciality 05.22.12 – Industrial Transport (275 – Transport Technology). – V. Lazarian Dnipropetrovsk National University of Railway Transport, Dnipro, 21 (2019). [Google Scholar]
  2. T. Norton, D. Sun. Computational fluid dynamics (CFD)–an effective and efficient design and analysis tool for the food industry: a review. Trends in Food Science & Technology, 17(11), 600-620 (2006). [CrossRef] [Google Scholar]
  3. M. Sorgun, M. Ozbayoglu. Predicting frictional pressure loss during horizontal drilling for non-Newtonian fluids. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(7), 631-640 (2011). [CrossRef] [Google Scholar]
  4. D. Syomin, A. Rogovyi. Features of a working process and characteristics of irrotational centrifugal pumps. Procedia Engineering, 39, 231-237 (2012). [CrossRef] [Google Scholar]
  5. R. Peyret, T. Taylor. Computational methods for fluid flow. (New York: Springer Science & Business Media) (2012). [Google Scholar]
  6. E. Fjodorov. Metody izmerenija urovnja i granic razdela mnogofaznyh zhidkih sred. Materialy VI nauchno-prakticheskoj konferencii 27–30 maja 2015 g. – Tomsk, 65 (2015). [in Russian] [Google Scholar]
  7. A. Thompson. Basic hydrodynamics. Elsevier Science. Library of Congress Cataloging in Publication Data, 177 (2013). [Google Scholar]
  8. J. Wang, S. Wang, T. Zhang, F. Battaglia. Mathematical and experimental investigation on pressure drop of heterogeneous ice slurry flow in horizontal pipes. International Journal of Heat and Mass Transfer, 108, 2381-2392 (2017). [CrossRef] [Google Scholar]
  9. F. Kabinejadian, D. Ghista. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution. Medical engineering and physics, 34(7), 860-872 (2012). [CrossRef] [Google Scholar]
  10. C. Hervé. The basics of plant hydraulics. The Journal of plant hydraulics, 1, 178-188 (2014). [Google Scholar]
  11. M. Liu, Y. Duan. Resistance properties of coal– water slurry flowing through local piping fittings. Experimental Thermal and Fluid Science, 33(5), 828-837 (2009). [CrossRef] [Google Scholar]
  12. A. Rawat, S. Singh, V. Seshadri. Computational methodology for determination of head loss in both laminar and turbulent regimes for the flow of high concentration coal ash slurries through pipeline Particulate Science and Technology. – Т. 34. – №. 3., 289-300 (2016). [CrossRef] [Google Scholar]
  13. K. Ekambara, R. Sanders, K. Nandakumar, J. Masliyah. Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX. Industrial & Engineering Chemistry Research, 48(17), 8159-8171 (2009). [CrossRef] [Google Scholar]
  14. P. Csizmadia, C. Hős. CFD-based estimation and experiments on the loss coefficient for Bingham and power-law fluids through diffusers and elbows. Computers & Fluids, 99, 116-123 (2014). [CrossRef] [Google Scholar]
  15. P. K. Swamee, N. Aggarwal. Explicit equations for laminar flow of Bingham plastic fluids. Journal of Petroleum Science and Engineering, 76 (3-4), 178-184 (2011). [CrossRef] [Google Scholar]
  16. J. Yin, L. Jiao, L. Wang. Large eddy simulation of unsteady flow in vortex diode, Nuclear Engineering and Design Т. 240. – №. 5. – 970-974 (2010). [CrossRef] [Google Scholar]
  17. A. Rogovyi. Energy performances of the vortex chamber supercharger. Energy, 163, 52-60 (2018). [CrossRef] [Google Scholar]
  18. Y. H. Alahmadi, A. F. Nowakowski. Modified shear stress transport model with curvature correction for the prediction of swirling flow in a cyclone separator Chemical Engineering Science. Vol. 147. – 150-165 (2016). [CrossRef] [Google Scholar]
  19. H. R. Thakare and A. D. Parekh. Computational analysis of energy separation in counter–flow vortex tube. Energy. Vol. 85. – 62-77 (2015). [CrossRef] [Google Scholar]
  20. P. E. Smirnov, F. R. Menter. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart–Shur correction term. Journal of Turbomachinery. Vol. 131. – №. 4. – 041010 (2009). [CrossRef] [Google Scholar]
  21. N. Chernetskaya-Beletskaya, A. Rogovyi, A. Shvornikova, I. Baranov, M. Miroshnikova, N. Bragin. Study on the coal-water fuel pipeline transportation taking into account the granulometric composition parameters. International Journal of Engineering & Technology. – Vol. 7, Iss.4.3, 240-245 (2018). [CrossRef] [Google Scholar]
  22. G. Besagni, F. Inzoli. Computational fluid-dynamics modeling of supersonic ejectors: Screening of turbulence modeling approaches. Applied Thermal Engineering; 117: 122-144 (2016). [CrossRef] [Google Scholar]
  23. N. Chernetskaya-Beletskaya, І. Baranov, M M. Miroshnikova. Zabezpechennja stalogo rozvitku regіonu: ekonomіchnі, upravlіnskі, pravovі ta іnformacіjno-tehnіchnі aspekti: kolektivna monografіja ; za zag. red. Ju. І. Kljus., N. V. Shvec. — Severodoneck: vid-vo SNU іm. V. Dalja ISBN 978-617-11-0118-0, 193-212 (2017). [in Ukrainian] [Google Scholar]
  24. N. Chernetskaya-Beletskaya, A. Rogovij, I. Baranov, M. Miroshnikova. Matematichna model prostorovoї trivimіrnoї techії vodovugіlnogo paliva. Vіsnik SNU іm. V. Dalja, № 1 (242) – 159-164 (2018). [in Ukrainian] [Google Scholar]
  25. N. Cherneckaya-Вeleckaya, A. Rogovyi, I. Baranov, M. Miroshnykova. Mathematical model flow coal-water fuel. Globalization of scientific and educational space. Innovations of transport. Problems, experience, prospects: thesis, May 2018, Italy – Severodonetsk: Volodymyr Dahl East Ukrainian National University, 82-83 (2018). [Google Scholar]
  26. І. Baranov. Formuvannja optimіzacіjnoї modelі viboru parametrіv transportuvannja vodovugіlnogo paliva promislovim gіdrotransportom. Vіsnik SNU іm. V. Dalja, № 3 (244), 7-13 (2018). [in Ukrainian] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.