Open Access
MATEC Web Conf.
Volume 292, 2019
23rd International Conference on Circuits, Systems, Communications and Computers (CSCC 2019)
Article Number 03017
Number of page(s) 4
Section Computers
Published online 24 September 2019
  1. A. Ahmim, L. Maglaras, M. A. Ferrag, M. Derdour and H. Janicke, A Novel Hierarchical Intrusion Detection System based on Decision Tree and Rules-based Models. In Proceedings of SecRIoT 2019, 1st International Workshop on Security and Reliability of IoT Systems. Santorini Island, Greece, May 29-31, 2019. [Google Scholar]
  2. [Google Scholar]
  3. R. Singh, H. Kumar, R. K. Singla, R. R. Ketti, Internet attacks and intrusion detection system: A review of the literatur, Online Information Review, 41, 2, pp. 171-184, (2017) Permanent link to this document: [CrossRef] [Google Scholar]
  4. S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Iqbal and K. Han, Enhanced Network Anomaly Detection Based on Deep Neural Networks. IEEE Access, Special section on cyber-threats and countermeasures in the healthcare sector. [Google Scholar]
  5. T. Auld, A. W. Moore and S. F. Gull, Bayesian Neural Networks for Internet Traffic Classification. IEEE Transactions on Neural Networks, 18, 1 (2007). [CrossRef] [Google Scholar]
  6. B. Shah and B. H. Trivedi, Artificial Neural Network based Intrusion Detection System: A Survey. International Journal of Computer Applications (0975 – 8887), 39, 6 (2012). [Google Scholar]
  7. N. el Kadhi, K. Hadjar and N. el Zant, A Mobile Agents and Artificial Neural Networks for Intrusion Detection. Journal of Software, 7, 1 (2012). [CrossRef] [Google Scholar]
  8. C. V. Zhou, C. Leckie and S. Karunasekera, A survey of coordinated attacks and collaborative intrusion detection. Computers and Security, 29, 1, pp.124-140 (2010). [CrossRef] [Google Scholar]
  9. A. Shenfield, D. Day and A. Ayesh, Intelligent intrusion detection systems using artificial neural networks. ICT Express 4, pp. 95–99 (2018). [CrossRef] [Google Scholar]
  10. M. Amruta and N. Talhar, Effective Denial of Service Attack Detection using Artificial Neural Network for Wired LAN. In Proceedings of SCOPES - International conference on Signal Processing, Communication, Power and Embedded System (2016). [Google Scholar]
  11. M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, A detailed analysis of the KDD CUP 99 data set, in Proc. IEEE Symp. Comput. Intell. Secur. Defense Appl. (CISDA). Piscataway, NJ, USA: IEEE Press, 2009, pp. 53–58. [Online]. Available: [Google Scholar]
  12. S. D. Bay, D. Kibler, M. J. Pazzani, and P. Smyth, The UCI KDD archive of large data sets for data mining research and experimentation, ACM SIGKDD Explor. Newslett., 2, 2, pp. 81–85, 2000. [Google Scholar]
  13. Mathworks, Matlab neural network toolbox., 2016. [Google Scholar]
  14. Canadian Institute for Cybersecurity, CICIDS2017 dataset.Available: [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.