Open Access
MATEC Web Conf.
Volume 292, 2019
23rd International Conference on Circuits, Systems, Communications and Computers (CSCC 2019)
Article Number 01012
Number of page(s) 8
Section Circuits and Systems
Published online 24 September 2019
  1. Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.; Senior, A.; Tucker, P.; Yang, K.; Le, Q. V Large scale distributed deep networks. NIPS (2012). [Google Scholar]
  2. Sajjad, M.; Nasir, M.; Muhammad, K.; Khan, S.; Jan, Z.; Sangaiah, A.K.; Elhoseny, M.; Baik, S.W. Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities. Futur. Gener. Comput. Syst. (2017). [Google Scholar]
  3. De Coninck, E.; Verbelen, T.; Vankeirsbilck, B.; Bohez, S.; Simoens, P.; Demeester, P.; Dhoedt, B. Distributed neural networks for internet of things: The big-little approach. In Proceedings of the Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering,LNICST; (2016). [Google Scholar]
  4. Leroux, S.; Bohez, S.; De Coninck, E.; Verbelen, T.; Vankeirsbilck, B.; Simoens, P.; Dhoedt, B. The cascading neural network: building the Internet of Smart Things. Knowl. Inf. Syst. (2017). [Google Scholar]
  5. Pavithra, D.; Balakrishnan, R. IoT based monitoring and control system for home automation. In Proceedings of the Global Conference on Communication Technologies, GCCT 2015 (2015). [Google Scholar]
  6. Kumar, N.S.; Vuayalakshmi, B.; Prarthana, R.J.; Shankar, A. IOT based smart garbage alert system using Arduino UNO. In Proceedings of the IEEE Region 10 Annual International Conference, Proceedings/TENCON; (2017). [Google Scholar]
  7. Chianese, A.; Piccialli, F. Designing a smart museum: When cultural heritage joins IoT. In Proceedings of the Proceedings - 2014 8th International Conference on Next Generation Mobile Applications, Services and Technologies, NGMAST 2014; (2014). [Google Scholar]
  8. He, N.; Qian, Y.; Huang, H.W. Experience of teaching embedded systems design with BeagleBone Black board. In Proceedings of the IEEE International Conference on Electro Information Technology; (2016). [Google Scholar]
  9. Zhong, X.; Liang, Y. Raspberry Pi: An Effective Vehicle in Teaching the Internet of Things in Computer Science and Engineering. Electronics (2016). [Google Scholar]
  10. Bader M. O. Al-thobaiti, Iman I. M. Abosolaiman, Mahdi H. M. Alzahrani, S.H.A.A.; Mohamed S. Soliman* Design and Implementation of a Reliable Wireless Real-Time Home Automation System Based on Arduino Uno Single-Board Microcontroller. Int. J. Control. Autom. Syst. (2014). [Google Scholar]
  11. Fransiska, R.W.; Septia, E.M.P.; Vessabhu, W.K.; Frans, W.; Abednego, W.; Hendro Electrical power measurement using Arduino Uno microcontroller and LabVIEW. In Proceedings of the Proc. of 2013 3rd Int. Conf. on Instrumentation, Communications, Information Technol., and Biomedical Engineering: Science and Technol. for Improvement of Health, Safety, and Environ., ICICI-BME ; (2013). [Google Scholar]
  12. Juang, H.S.; Lurrr, K.Y. Design and control of a two-wheel self-balancing robot using the arduino microcontroller board. In Proceedings of the IEEE International Conference on Control and Automation, ICCA; (2013). [Google Scholar]
  13. Nayyar, A.; Puri, V. A review of Beaglebone smart board’s-a Linux/android powered low cost development platform based on ARM technology. In Proceedings of the Proceedings - 9th International Conference on Future Generation Communication and Networking, FGCN; (2016). [Google Scholar]
  14. Siradjuddin, I.; Tundung, S.P.; Indah, A.S.; Adhisuwignjo, S. A real-time Model Based Visual Servoing application for a differential drive mobile robot using Beaglebone Black embedded system.; (2016). [Google Scholar]
  15. Chianese, A.; Piccialli, F.; Riccio, G. Designing a smart multisensor framework based on beaglebone black board. In Proceedings of the Lecture Notes in Electrical Engineering; (2015). [Google Scholar]
  16. Desai, N.S.; Alex, J.S.R. IoT based air pollution monitoring and predictor system on Beagle bone black. In Proceedings of the 2017 International Conference On Nextgen Electronic Technologies: Silicon to Software, ICNETS2 2017; (2017). [Google Scholar]
  17. Shariff, S.U.; Swamy, J.C.N.; Seshachalam, D. Beaglebone black based e-system and advertisement revenue hike scheme for Bangalore city public transportation system. In Proceedings of the Proceedings of the 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology, iCATccT; (2017). [Google Scholar]
  18. Benadda, B.; Elgorma, M.; Beldjilali, B. Embedded BeagleBone based Wi-Fi intrusions detector and vulnerabilities checker. In Proceedings of the 2017 Seminar on Detection Systems Architectures and Technologies, DAT 2017; (2017). [Google Scholar]
  19. Morales, M. An Introduction to the TivaTM C Series Platform of Microcontrollers 2013, Texas Instruments, (2013). [Google Scholar]
  20. Torres Galindo, A.K.; Gómez Rivera, A.F.; Jiménez López, A.F. Development of a multispectral system for precision agriculture applications using embedded devices. Sist. Telemática Orig. Res. (2015). [Google Scholar]
  21. Ahmed, S.; Shakev, N.; Milusheva, L.; Topalov, A. Neural net tracking control of a mobile platform in robotized wireless sensor networks. In Proceedings of the Proceedings of the 2015 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics, ECMSM 2015; (2015). [Google Scholar]
  22. Mason, C.H.S.; William, Y.; Albert, F.Y.C.; Darmandran, S. Design and implementation of sub-GHz wireless light switch with integrated Wi-Fi. In Proceedings of the IEEE International Conference on Communication, Network and Satellite IEEE COMNETSAT, (2014). [Google Scholar]
  23. Abeyruwan, S., Sikder, F., Visser, U., … Sarkar, D. Activity Monitoring and Prediction for Humans and NAO Humanoid Robots Using Wearable Sensors. In Proceedings of the FLAIRS Conference; 2015; pp. 342–347. (2015) [Google Scholar]
  24. Buckley, J.J.; Hayashi, Y. Fuzzy neural networks: A survey. Fuzzy Sets Syst. (1994). [Google Scholar]
  25. Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications. Neurocomputing (2017). [Google Scholar]
  26. Ortega-Zamorano, F.; Jerez, J.M.; Munoz, D.U.; Luque-Baena, R.M.; Franco, L. Efficient Implementation of the Backpropagation Algorithm in FPGAs and Microcontrollers. IEEE Trans. Neural Networks Learn. Syst. (2016). [Google Scholar]
  27. Ortega-Zamorano, F.; Molina-Cabello, M.A.; López-Rubio, E.; Palomo, E.J. Smart motion detection sensor based on video processing using self-organizing maps. Expert Syst. Appl. (2016). [Google Scholar]
  28. Subirats, J.L.; Franco, L.; Jerez, J.M. C-Mantec: A novel constructive neural network algorithm incorporating competition between neurons. Neural Networks (2012). [Google Scholar]
  29. Ortega-Zamorano, F.; Jerez, J.M.; Subirats, J.L.; Molina, I.; Franco, L. Smart sensor/actuator node reprogramming in changing environments using a neural network model. Eng. Appl. Artif. Intell. (2014). [Google Scholar]
  30. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. (1958). [Google Scholar]
  31. Sadegh, N. A Perceptron Network for Functional Identification and Control of Nonlinear Systems. IEEE Trans. Neural Networks (1993). [Google Scholar]
  32. Pandey, P.C.; Barai, S. V. Multilayer perceptron in damage detection of bridge structures. Comput. Struct. (1995). [Google Scholar]
  33. Orhan, U.; Hekim, M.; Ozer, M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. (2011). [Google Scholar]
  34. Yan, H.; Jiang, Y.; Zheng, J.; Peng, C.; Li, Q. A multilayer perceptron-based medical decision support system for heart disease diagnosis. Expert Syst. Appl. (2006). [Google Scholar]
  35. Widrow, B. Adaptive “adaline” Neuron Using Chemical “memistors.”. (1960). [Google Scholar]
  36. Chen, C.I.; Chang, G.W. A two-stage ADALINE for harmonics and interharmonics measurement. In Proceedings of the Proceedings of the 2010 5th IEEE Conference on Industrial Electronics and Applications, ICIEA 2010; (2010). [Google Scholar]
  37. Abdel-Galil, T.K.; El-Saadany, E.F.; Salama, M.M.A. Power quality event detection using Adaline. Electr. Power Syst. Res. (2003). [Google Scholar]
  38. Joorabian, M.; Mortazavi, S.S.; Khayyami, A.A. Harmonic estimation in a power system using a novel hybrid Least Squares-Adaline algorithm. Electr. Power Syst. Res. (2009). [Google Scholar]
  39. Zhang, G.; Wang, G.; Xu, D.; Zhao, N. ADALINE-network-based PLL for position sensorless interior permanent magnet synchronous motor drives. IEEE Trans. Power Electron. (2016). [Google Scholar]
  40. Hopfield, J.J. Neural networks and physical systems with emergent collective abilities. Proc. Natl. Acad. Sci. U. S. A. (1982). [Google Scholar]
  41. Zhu, Y.; Yan, H. Computerized tumor boundary detection using a Hopfield neural network. IEEE Trans Med Imaging (1997). [Google Scholar]
  42. Tatem, A.J.; Lewis, H.G.; Atkinson, P.M.; Nixon, M.S. Super-resolution target identification from remotely sensed images using a Hopfield neural network. IEEE Trans. Geosci. Remote Sens. (2001). [Google Scholar]
  43. Tatem, A.J.; Lewis, H.G.; Atkinson, P.M.; Nixon, M.S. Super-resolution land cover pattern prediction using a Hopfield neural network. Remote Sens. Environ. (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.