Open Access
MATEC Web Conf.
Volume 292, 2019
23rd International Conference on Circuits, Systems, Communications and Computers (CSCC 2019)
Article Number 01003
Number of page(s) 5
Section Circuits and Systems
Published online 24 September 2019
  1. H. Zhang, K. Mohammed, C. David, and L. Gretchen, Mining photo-sharing websites to study ecological phenomena, Proceedings of the 21st International Conference on World Wide Web, 749-758 (2012). [CrossRef] [Google Scholar]
  2. T. Kurashima, T. Iwata, G. Irie, and K. Fujimura, Travel route recommendation using geotags in photo sharing sites, Proceedings of the 19th ACM International Conference on Information and Knowledge Management, 579-588 (2010). [Google Scholar]
  3. Y. Zheng, and X. Xie, Learning travel recommendations from user-generated GPS traces, Transactions on Intelligent Systems and Technology, 2(1), 2:1-2:29 (2011). [Google Scholar]
  4. C. Y. Tsai, and S.H. Chung, A personalized route recommendation service for theme parks using RFID information and tourist behavior, Decision Support Systems 52(2), 514-527 (2012). [CrossRef] [Google Scholar]
  5. H. Hsieh, C.T. Li, and S.D. Lin, Exploiting large-scale check-in data to recommend time-sensitive routes, Proceedings of the ACM SIGKDD International Workshop on Urban Computing, 55-62 (2012). [CrossRef] [Google Scholar]
  6. K. Jiang, H. Yin, P. Wang, and N. Yu, Learning from contextual information of geo-tagged web photos to rank personalized tourism attractions, Neurocomputing, 119, 17-25 (2013). [CrossRef] [Google Scholar]
  7. D. Gavalas, , K. Charalampos, M. Konstantinos, and P. Grammati, A survey on algorithmic approaches for solving tourist trip design problems, Journal of Heuristics, 20(3), 291-328 (2014). [CrossRef] [Google Scholar]
  8. Z. Xu, L. Chen, and G. Chen, Topic based context-aware travel recommendation method exploiting geotagged photos, Neurocomputing, 155, 99-107 (2015). [CrossRef] [Google Scholar]
  9. Y. Sun, H. Fan, M. Bakillah, and A. Zipf, Road-based travel recommendation using geo-tagged images. Computers, Environment and Urban Systems, 53, 110-122 (2015). [CrossRef] [Google Scholar]
  10. C.Y. Sun, and A. Lee, Tour reccomendations by mining photo sharing social media, Decision Support Systems, 101, 28-39 (2017). [CrossRef] [Google Scholar]
  11. D. J. Crandall, L. Backstrom, D. Huttenlocher, and J. Kleinberg, Mapping the world’s photos, Proceedings of the 18th International Conference on World Wide Web, 761-770 (2009). [CrossRef] [Google Scholar]
  12. D.M. Blei, A. Y. Ng, M.I. Jordan, Latent dirichlet allocation, Journal of Machine Learning Research, 3(4–5), 993–1022 (2003). [Google Scholar]
  13. N. Tax, I. Verenich, M.L. Rosa, and M. Dumas, Predictive business process monitoring with LSTM neural networks, International Conference on Advanced Information Systems Engineering, 477-492 (2017). [CrossRef] [Google Scholar]
  14. T. Luong, Building Your Own Neural Machine Translation System in TensorFlow. Retrieved on May 25th, 2018 from: (2017). [Google Scholar]
  15. D. Mimno, H.M. Wallach, E. Talley, M. Leenders, and A. McCallum, Optimizing semantic coherence in topic models, Proceedings of the Conference on Empirical Methods in Natural Language Processing, 262-272 (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.