Open Access
Issue
MATEC Web Conf.
Volume 285, 2019
16th Symposium of Structural Dynamics (DYNKON 2019)
Article Number 00003
Number of page(s) 8
DOI https://doi.org/10.1051/matecconf/201928500003
Published online 12 July 2019
  1. D.Y. Gao. Nonlinear elastic beam theory with application in contact problems and variational approaches. Mechanics Research Communications , 23(1):11–17, 1996 [CrossRef] [Google Scholar]
  2. D.Y. Gao and D.L. Russell. An extended beam theory for smart materials applications: II. Static formation problems. Appl. Math. Optim., 38(1):69–94, 1998 [CrossRef] [Google Scholar]
  3. D.L. Russell and L.W. White. A nonlinear elastic beam system with inelastic contact constraints. Appl. Math. Optim., 46:291–312, 2002 [CrossRef] [Google Scholar]
  4. K.T. Andrews, M.F. M’Bengue, and M. Shillor. Vibrations of a nonlinear dynamic beam between two stops. Discrete and Continuous Dynamical System (DCDS-B), 12(1):23–38, 2009 [CrossRef] [Google Scholar]
  5. M.F. M’Bengue and M. Shillor. Regularity result for the problem of vibrations of a nonlinear beam. Electron. J. Diff. Eqns., 27:1–12, 2008 [Google Scholar]
  6. K.T. Andrews, Y. Dumont, M.F. M’Bemgue, J. Purcell, and M. Shillor. Analysis and simulations of a nonlinear dynamic beam. Appl. Math. Physics (ZAMP), 63(6):1005–1019, 2012 [CrossRef] [Google Scholar]
  7. K.L. Kuttler, J. Purcell, and M. Shillor. Analysis and simulations of a contact problem for a nonlinear dynamic beam with a crack. Quarterly J. Mech. Appl. Math., 2011 DOI: 10.1093/qjmam/hbr018. [Google Scholar]
  8. J. Ahn, K.L. Kuttler, and M. Shillor. Dynamic contact of two Gao beams. Electron. J. Diff. Equ., 194:1–42, 2012 [Google Scholar]
  9. K.T. Andrews, K.L. Kuttler, and M. Shillor. Dynamic Gao beam in contact with a reactive or rigid foundation, volume 33, pages 225–248. 2015 [Google Scholar]
  10. M.F. M’Bengue. Analysis of a Nonlinear Dynamic Beam with Material Damage or Contact. PhD thesis, Oakland University, 2008 [Google Scholar]
  11. C.I. Bajer, B. Dyniewicz, and M. Shillor. A Gao beam subjected to a moving inertial point load. Mathematics and Mechanics of Solids, 23(3):461–472, 2018 [CrossRef] [Google Scholar]
  12. B. Dyniewicz, C.I. Bajer, K.L. Kuttler, and M. Shillor. Vibrations of a Gao beam subjected to a moving mass (in print). Nonlinear Analysis: Real World Applications, 2019 [Google Scholar]
  13. C.I. Bajer and B. Dyniewicz. Numerical analysis of vibrations of structures under moving inertial load. Springer, 2012 [CrossRef] [Google Scholar]
  14. C. I. Bajer. Adaptive mesh in dynamic problem by the space-time approach. Computers and Structures, 33(2):319-325, 1989 [CrossRef] [Google Scholar]
  15. B. Dyniewicz, D. Pisarski, and C. Bajer. Vibrations of a mindlin plate subjected to a pair of inertial loads moving in opposite directions. Journal of Sound and Vibration, 386:265–282, 2017 [CrossRef] [Google Scholar]
  16. D.Y. Gao. Finite deformation beam models and triality theory in dynamical post-buckling analysis. Intl. J. Non-Linear Mechanics, 35:103–131, 2000 [CrossRef] [Google Scholar]
  17. A. Renaudot. Etude de l’influence des charges en mouvement sur la resistance, des ponts metallique a poutres droites. Annales des Ponts et Chausses, 1:145–204, 1861 [Google Scholar]
  18. C. I. Bajer and B. Dyniewicz. Virtual functions of the space-time finite element method in moving mass problems. Computers and Structures, 87:444–455, 2009 [CrossRef] [Google Scholar]
  19. B. Dyniewicz. Space-time finite element approach to general description of a moving inertial load. Finite Elem. Anal. and Des., 62:8–17, 2012 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.