Open Access
Issue
MATEC Web Conf.
Volume 282, 2019
4th Central European Symposium on Building Physics (CESBP 2019)
Article Number 02068
Number of page(s) 7
Section Regular Papers
DOI https://doi.org/10.1051/matecconf/201928202068
Published online 06 September 2019
  1. Bomberg, M., D. Yarbrough, and M. Furtak, 2017, Buildings with environmental quality management (EQM), part 1: Designing multi-functional construction materials, J. Building Physics, 41(3) p 193-208 [CrossRef] [Google Scholar]
  2. Romanska-Zapala, A., M. Bomberg, M, Fedorczak-Cisak, M. Furtak, D. Yarbrough and M. Dechnik, 2018, “Buildings with environmental quality management (EQM), part 2: integration of hydronic heating/cooling with thermal mass, Journal of Building Physics 41 (5) p. 397–417 [Google Scholar]
  3. D.W. Yarbrough, M Bomberg and A Romanska-Zapala, Buildings with environmental quality management (EQM), part 3: from log houses to eqm zero energy buildings J. of Building Physics online DOI: 10.1177/1744259118786758 42 (5) in press [Google Scholar]
  4. A Romanska-Zapala M Bomberg and D.W. Yarbrough, Buildings with environmental quality management (EQM), part 4: a path to the future NZEB, Journal of Building Physics on line, sagepub.co.uk/DOI: 10.1177/1744259118790756 [Google Scholar]
  5. M. Dudzik Współczesne metody projektowania, weryfikacji poprawności i modelowania zjawisk trakcji elektrycznej; Monografia, Politechnika Krakowska im. Tadeusza Kościuszki. Kraków, Wydaw. PK, 2018. 187 s., Monografie Politechniki Krakowskiej. Inżynieria Elektryczna i Komputerowa, ISBN 978-83-65991-28-7 [Google Scholar]
  6. K. Gądek, M. Dudzik, A. Stręk, A novel three-head ultrasonic system for distance measurements based on the correlation method, Measurement Science Review, 2014, Vol. 14, No. 6, s. 331-336, DOI: 10.2478/msr-2014-0045. ISSN 1335-8871. [CrossRef] [Google Scholar]
  7. M. Dudzik, R. Mielnik, Z. Wróbel, Preliminary analysis of the effectiveness of the use of artificial neural networks for modelling time-voltage and time-current signals of the combination wave generator, 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), ISBN 978-1-5386-4941-1 e-ISBN. ISBN 978-1-5386-4940-4 USB [Google Scholar]
  8. M. Dudzik, A. Jagiełło, S. Drapik, J. Prusak, The selected real tramway substation overload analysis using the optimal structure of an artificial neural network, 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), ISBN 978-1-5386-4941-1 e-ISBN. ISBN 978-1-5386-4940-4 [Google Scholar]
  9. M. Dudzik, K. Tomczyk, M. Sieja, Optimal dynamic error formula for charge output accelerometer obtained by the neural network, 2018 International Symposium on Electrical Machines (SME): SME 2018, Andrychów, Poland, 10-13 June 2018, IEEE 2018. doi: 10.1109/ISEM.2018.8442477. ISBN 978-153865210-7 [Google Scholar]
  10. M. Dudzik, R. Mielnik, Z. Wróbel, The optimal artificial neural network model of time-voltage signal of the combination wave generator, 2018 International Symposium on Electrical Machines (SME): SME 2018, Andrychów, Poland, 10-13 June 2018, doi: 10.1109/ISEM.2018.8443033. ISBN 978-153865210-7 [Google Scholar]
  11. M. Dudzik, K. Tomczyk, A. St. Jagiełło, Analysis of the error generated by the voltage output accelerometer using the optimal structure of an artificial neural network, Proceedings of the 2018 19th International Conference on Research and Education in Mechatronics (REM 2018), Delft, The Netherlands June 7-8, 2018, IEEE, 2018. s. 7-11: doi: 10.1109/REM.2018.8421789. ISBN 978-1-5386-5413-2 [Google Scholar]
  12. M. Dudzik, R. Mielnik, Z. Wróbel, Preliminary analysis of the effectiveness of the use of artificial neural networks for modeling time-voltage signal of the combination wave generator, 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF, doi: 10.1109/ISEF.2017.8090698. ISBN 978-1-5386-1661-1 Electronic. ISBN 978-1-5386-1660-4 USB. ISBN 978-1-5386-1662-8 Print [Google Scholar]
  13. Ojha, V.K.; Abraham, A.; Snášel, V. Metaheuristic design of feedforward neural networks: A review of two decades of research. Eng. Appl. Artif. Intel. 2017, 60, 97-116. DOI: 10.1016/j.engappai.2017.01.013. [CrossRef] [Google Scholar]
  14. La Rocca M.; Perna C. Model Selection for Neural Network Models: A Statistical Perspective. In Computational Network Theory: Theoretical Foundations and Applications, 1st ed.; Dehmer M., Emmert-Streib F., Pickl S., Eds. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. [Google Scholar]
  15. Bashiri, M.; Farshbaf Geranmayeh, A. Tuning the parameters of an artificial neural network using central composite design and genetic algorithm. Scientia Iranica 2011, 18(6),1600-1608. DOI: 10.1016/j.scient.2011.08.031. [CrossRef] [Google Scholar]
  16. Anders, U.; Korn, O. Model selection in neural networks. Neural Networks 1999, 12(2),309-323. DOI: 10.1016/S0893-6080(98)00117-8. [CrossRef] [Google Scholar]
  17. Famili, A.; Shen, W.-M.; Weber, R.; Simoudis, E. Data preprocessing and intelligent data analysis. Intell. Data Anal. 1997, 1, 3-23. DOI:10.1016/S1088-467X(98)00007-9. [CrossRef] [Google Scholar]
  18. Anysz, H.; Zbiciak, A.; Ibadov, N. The influence of input data standardization method on prediction accuracy of artificial neural networks. Procedia Eng. 2016, 153, 66-70. [CrossRef] [Google Scholar]
  19. Doreswamy; Vastrad, C.M. Performance Analysis Of Neural Network Models For Oxazolines And Oxazoles Derivatives Descriptor Dataset. International Journal of Information Sciences and Techniques 2013, 3(6). DOI: 10.5121/ijist.2013.3601. [Google Scholar]
  20. Bartman J., Podstawowe funkcje biblioteki narzędziowej ”Neural Network Toolbox. Version 5” pakietu MATLAB v.6, Uniwersytet Rzeszowski, Zakład Elektrotechniki i Informatyki, (in Polish, from the web) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.