Open Access
Issue
MATEC Web Conf.
Volume 280, 2019
The 5th International Conference on Sustainable Built Environment (ICSBE 2018)
Article Number 01001
Number of page(s) 17
Section Disaster Risk Management
DOI https://doi.org/10.1051/matecconf/201928001001
Published online 08 May 2019
  1. N Nguyen, J. Griffin, A. Cipta, P.R. Cummins, Indonesia’s Historical Earthquake, Geoscience, Australia, 79p, (2015) [Google Scholar]
  2. Bappenas, “Preliminary Damage and Loss Assessment Yogyakarta and Central Java Natural Disaster,” no. June, p. 140, 2006. [Google Scholar]
  3. Badan Standardisasi Nasional, “Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung,” Sni 17262012, p. 149, 2012. [Google Scholar]
  4. M. Irsyam, S Widyantoro, D.H. Natawijaya, I. Meilano, A. Rudyanto, S. Hidayati, W. Triyoso, N.R Hanifa, D. Djarwadi, L. Faisal, Sunarjito, Peta Sumber dan Bahaya Gempa Indonesia 2017, Pusat Studi Gempa Nasional Pusat Litbang Perimahan dan Pemukiman, 376p, (2017) [Google Scholar]
  5. A. Saputra, C. Gomez, I. Delikostidis, P.Z. Reza, D.S. Hatmoko, J. Sartohadi, M.A. Setiawan, Determining earthquake susceptable area southeast of Yogyakarta, Indonesia-Outcrop analysis from structure from mition (SfM) and geographic information system, Geoscience, 8, 132, doi: 10.3390/geosciences8040132 [Google Scholar]
  6. T. R. Walter et al., “The 26 May 2006 magnitude 6.4 Yogyakarta earthquake south of Mt. Merapi volcano: Did lahar deposits amplify ground shaking and thus lead to the disaster?,” Geochemistry, Geophys. Geosystems, vol. 9, no. 5, p. n/a-n/a, May 2008. [CrossRef] [Google Scholar]
  7. C.C. Tsai, Chen C.W, A comparison of site response analysis method and its impact on earthquake engineeing practice, The 2nd Europen Conference on Earthquake Engineering and Seimology, Istanbul, (2014). [Google Scholar]
  8. D. Park, Y.M.A. Hashash, Evaluation of seismic site factor in the Mississippi Embayment I, Estimation of dynamic properties, Soil Dynamics and Earthquake Engineering, 25, pp.133-144, (2005) [CrossRef] [Google Scholar]
  9. K.Pallav, S.T.G. Raghukant, Estimation of seimic site coefficient and seismic microzonation of Imphal City, India, using the Probabilistic Approach, Acta Geophyisica, DOI: 10.1515/acgeo-2015-0045, (2015) [Google Scholar]
  10. W.Partono, M. Irsyam, S.P.R Wardani, Development of site class and site coefficient maps of Semarang, Indonesia, using field shear wave velocity data, MATEC Web Conference, 101, 01010, (2017) [Google Scholar]
  11. Z. L. Kyaw, S. Pramumijoyo, S. Husein, T. F. Fathani, J. Kiyono, and R. R. Putra, “Estimation of Subsurface Soil Layers using H / V Spectrum of Densely Measured Microtremor Observations (Case Study: Yogyakarta City, Central Java-Indonesia),” Int. J. Sustain. Futur. Hum. Secur., vol. 2, no. 1, pp. 13–20, 2014. [CrossRef] [Google Scholar]
  12. D. W. Nurwihastuti, J. Sartohadi, D. Mardiatno, U. Nehren, and Restu, “Understanding of Earthquake Damage Pattern through Geomorphological Approach: A Case Study of 2006 Earthquake in Bantul, Yogyakarta, Indonesia,” World J. Eng. Technol., vol. 2, no. 3, pp. 61–70, 2014. [CrossRef] [Google Scholar]
  13. Daryono, “Indeks kerentanan seismik berdasarkan mikrotremor pada setiap satuan bentuk lahan di zona Graben Bantul, Daerah Istimewa Yogyakarta,” Gadjah Mada University, 2011. [Google Scholar]
  14. J.W.Baker, Introduction to Probabilistic Seismic Hazard Analysis (PSHA), Stanford University, Version 1.3, 72p, (2008) [Google Scholar]
  15. A.Kijko, Introduction to Probabilistic Seismic Hazard Analysis, Natural Hazard Centre, University of Pretoria, South Africa, 26p, (2011). [Google Scholar]
  16. R.Borcherdt, A Review of Empirical Evidance for Site Coefficient in Building Code Provision, United States Geological Survey (USGS), (2006). [Google Scholar]
  17. S.C Guk, Discussion on seismic site characterization in Korea, Korea Institute of Geoscience and Mineral Resources, (2012) [Google Scholar]
  18. D.S Kim, S. Munandhar, H.I. Cho, New site classification system and respponse spectrum in Korean Seismic Code, The 2017 Congress on Advanced in Structural Engineering and Mechanics, Korea, (2017) [Google Scholar]
  19. C.B. Crouse, Site Coefficients, Fa, Fv and Fpga proposed by ASCE7-16, AECOM, (2017) [Google Scholar]
  20. F. Febriani, Sunsurface structure of Cimandiri fault zone, West Java Indonesia, Graduate School of Science, Chiba University, 163p, (2015) [Google Scholar]
  21. B Sunardi, Percepatan Tanah sintetis kota Yogyakarta berdasarkan Deagregasi Bahaya Gempa, Jounal Lingkungan dan Bencana Geologi, Vol.6, No.2, pp.211-218, (2016). (in Bahasa) [Google Scholar]
  22. H.Z. Abidin, H. Andreas, T. Kato, T. Ito, I. Meilano, F. Kimata, D. Natawidjaya, H.Harjono, Crustal deformation study in Java (Indonesia), Using GPS, Journal. of. Earthquake and tsunami, Vo.3, No.2, pp.77-88,(2009) [CrossRef] [Google Scholar]
  23. T. R. Walter, L.Wang, B.G. Luchr, J. Wessermann, Y.Bechr, S.Parolai, A. Anggraini, E.Gunter, M.Sobiesiak, H.Grosser, H.U.Wetzel, C.Melkereit, P.J.K.S. Brotopuspito, P. Haryadi, J.Zschau, “The 26 May 2006 magnitude 6.4 Yogyakarta earthquake south of Mt. Merapi volcano: Did lahar deposits amplify ground shaking and thus lead to the disaster?,” Geochemistry, Geophys. Geosystems, vol. 9, no. 5, p. n/a-n/a, May 2008. [CrossRef] [Google Scholar]
  24. S. Akkar, M. A. Sandıkkaya, and J. J. Bommer, “Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East,” Bull. Earthq. Eng., vol. 12, no. 1, pp. 359–387, 2014. [CrossRef] [Google Scholar]
  25. F. Cotton, F. Scherbaum, J. J. Bommer, and H. Bungum, “Criteria for selecting and adjusting ground-motion models for specific target regions: Application to central Europe and rock sites,” J. Seismol., vol. 10, no. 2, pp. 137–156, 2006. [CrossRef] [Google Scholar]
  26. J. Douglas, E. Faccioli, F. Cotton, and C. Cauzzi, “Selection of ground-motion prediction equations for GEM1,” Earthquake, no. September, pp. 1–3, 2009. [Google Scholar]
  27. J. J. Bommer, J. Douglas, F. Scherbaum, F. Cotton, H. Bungum, and D. Fah, “On the Selection of Ground-Motion Prediction Equations for Seismic Hazard Analysis,” Seismol. Res. Lett., vol. 81, no. 5, pp. 783–793, Sep. 2010. [CrossRef] [Google Scholar]
  28. J. P. Stewart et al., “Selection of ground motion prediction equations for the global earthquake model,” Earthq. Spectra, vol. 31, no. 1, pp. 19–45, 2015. [CrossRef] [Google Scholar]
  29. W. Pawirodikromo, The Estimated PGA map of Mw6.4 Yogyakarta, Indonesia Earthquake Constructed from the Modified Mercalli Intensity Imm, Bulletin of the New Zealand Society of Earthquake Enfineering (BNZSEE), Vol.52, Issue 2, pp.94-104, (2018). [Google Scholar]
  30. J. J. Bommer and F. Scherbaum, “Capturing and limiting ground motion uncertainty in seismic hazard assessment,” Dir. strong motion Instrum., vol. 58, pp. 25–40, 2005. [CrossRef] [Google Scholar]
  31. G. M. Atkinson, “An empirical perspective on uncertainty in earthquake ground motion prediction,” Can. J. Civ. Eng., vol. 38, no. 9, pp. 1002–1015, 2011. [Google Scholar]
  32. F. Strasser, J. Bommer, and N. Abrahamson, “Estimating Ground-Motion Variability: Issues, Insights & Challenges,” 14th World Conf. Earthq. Eng., 2008. [Google Scholar]
  33. R. Foulser-Piggott, “Quantifying the epistemic uncertainty in ground motion models and prediction,” Soil Dyn. Earthq. Eng., vol. 65, pp. 256–268, 2014. [CrossRef] [Google Scholar]
  34. V. Sokolov, F. Wenzel, W. Y. Jean, and K. L. Wen, “Uncertainty and spatial correlation of earthquake ground motion in Taiwan,” Terr. Atmos. Ocean. Sci., vol. 21, no. 6, pp. 905–921, 2010 [Google Scholar]
  35. Delavaud, E., Cotton, F., Akkar, S., Scherbaum, F., Danciu, L., Beauval, C., Drouet, S., Douglas, J., Basili, R., Sandikkaya, M. A., Segou, M., Faccioli, E., Theodoulidis, N. (2012): Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. - Journal of Seismology, 16, 3, pp. 451—473. [CrossRef] [Google Scholar]
  36. Badan Standardisasi Nasional, “Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung,” SNI 1726 2012, p. 149, 2012. [Google Scholar]
  37. S.A. Obeye, Seismic site coefficient model and improve design response spectra based on conditions in South Corolina, Dissertation, Department of Civil Engineering, Clamson University, 281p, (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.