Open Access
Issue
MATEC Web Conf.
Volume 277, 2019
2018 International Joint Conference on Metallurgical and Materials Engineering (JCMME 2018)
Article Number 02002
Number of page(s) 6
Section Data and Signal Processing
DOI https://doi.org/10.1051/matecconf/201927702002
Published online 02 April 2019
  1. Horn, B.K., Schunck, B.G.: Determining optical flow. 1981 Artificial intelligence 17185 [Google Scholar]
  2. Chen, Q., Koltun, V.: Full flow: Optical flow estimation by global optimizationover regular grids. 2016 Proc. Int. Conf. on Computer Vision and Pattern Recognition. (Las Vegas:IEEE) p 4706 [Google Scholar]
  3. Bailer, C., Taetz, B., Stricker, D.: Flow fields: Dense correspondence fields forhighly accurate large displacement optical flow estimation. 2015 Proc. Int. Conf. on Computer Vision.(Santiago:IEEE) p 4015 [Google Scholar]
  4. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van derSmagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional networks. 2015 Proc. Int. Conf. on Computer Vision.(Santiago:IEEE) p 2758 [Google Scholar]
  5. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. 2011 IEEE Trans. on Pattern Analysis and Machine Intelligence 33500 [Google Scholar]
  6. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. 2017 Proc. Int. Conf. on Computer Vision and Pattern Recognition. vol 2 (Honolulu:IEEE) [Google Scholar]
  7. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with anapplication to stereo vision 1981 [Google Scholar]
  8. Sun, D., Roth, S., Black, M.J.: A quantitative analysis of current practices inoptical flow estimation and the principles behind them. 2014 Int. J. Computer Vision. 106 115 [Google Scholar]
  9. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet2.0:Evolution of optical flow estimation with deep networks. 2017 Proc. Int. Conf. on Computer Vision and Pattern Recognition. vol 2 (Honolulu:IEEE) [Google Scholar]
  10. Bouguet, J.Y.: Pyramidal implementation of the affine lucas kanade feature trackerdescription of the algorithm. 2001 Intel Corporation 5 4 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.