Open Access
MATEC Web Conf.
Volume 271, 2019
2019 Tran-SET Annual Conference
Article Number 08006
Number of page(s) 5
Section Pavements
Published online 09 April 2019
  1. Dekker, R., (1996). Applications of maintenance optimization models: a review and analysis. Reliability engineering & system safety, 51(3), 229–240. [Google Scholar]
  2. Kobayashi, K., Do, M., and Han, D., (2010). Estimation of Markovian transition probabilities for pavement deterioration forecasting. KSCE Journal of Civil Engineering, 14(3), 343–351. [CrossRef] [Google Scholar]
  3. Peshkin, D., Zimmerman, K., Freeman, T., and Smith, K., (2007). Pavement Preservation: Preventive Maintenance Treatment, Timing, and Selection. Instructor’s Guide. Federal Highway Administration, Washington, DC. [Google Scholar]
  4. Medina, R., Gómez-García-Bermejo, J., and Zalama, E., (2010). Automated visual inspection of road surface cracks. Proc., International Symposium on Automation and Robotics in Construction (ISARC). [Google Scholar]
  5. Pierce, L.M., McGovern, G., and Zimmerman, K.A., (2013). Practical guide for quality management of pavement condition data collection. [Google Scholar]
  6. TXDOT (2016). Pavement Management Information System Rater’s Manual. TEXDOT. [Google Scholar]
  7. Achenbach, J., (2007). On the road from schedule-based nondestructive inspection to structural health monitoring. Proc., 6th International Workshop on Structural Health Monitoring: Quantification, Validation, and Implementation, IWSHM 2007, DEStech Publications. [Google Scholar]
  8. Cafiso, S., Di Graziano, A., Giudice, O., and Pappalardo, G., (2014). Tools for Road Inspection and Safety Management. Proc., 3rd International Conference on Transportation Infrastructure, Pisa. [Google Scholar]
  9. Ferguson, R.A., Pratt, D.N., Turtle, P.R., Macintyre, I.B., Moore, D.P., Kearney, P.D., Best, M.J., Gardner, J.L., Berman, M., and Buckley, M.J., (2003). Road pavement deterioration inspection system. Google Patents. [Google Scholar]
  10. Huang, Y., and Xu, B., (2006). Automatic inspection of pavement cracking distress. Journal of Electronic Imaging, 15(1), 013017-013017-013016. [CrossRef] [Google Scholar]
  11. Salari, E., and Bao, G., (2011). Automated pavement distress inspection based on 2D and 3D information. Proc., Electro/Information Technology (EIT), 2011 IEEE International Conference on, IEEE, 1–4. [Google Scholar]
  12. Varadharajan, S., Jose, S., Sharma, K., Wander, L., and Mertz, C., (2014). Vision for road inspection. Proc., Applications of Computer Vision (WACV), 2014 IEEE Winter Conference, 115–122. [CrossRef] [Google Scholar]
  13. Pu, S., Rutzinger, M., Vosselman, G., and Elberink, S.O., (2011). Recognizing basic structures from mobile laser scanning data for road inventory studies. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), S28-S39. [CrossRef] [Google Scholar]
  14. Mahmoudzadeh, M., Got, J.-B., Lambot, S., and Grégoire, C., (2013). Road inspection using full-wave inversion of far-field ground-penetrating radar data. Proc., Advanced Ground Penetrating Radar (IWAGPR), 2013 7th International Workshop on, IEEE, 1–6. [Google Scholar]
  15. Su, Y.-S., Kang, S.-C., Chang, J.-R., and Hsieh, S.-H., (2012). Dual-light inspection method for automatic pavement surveys. Journal of Computing in Civil Engineering, 27(5), 534–543. [CrossRef] [Google Scholar]
  16. Yu, S.-J., Sukumar, S.R., Koschan, A.F., Page, D.L., and Abidi, M.A., (2007). 3D reconstruction of road surfaces using an integrated multi-sensory approach. Optics and lasers in engineering, 45(7), 808–818. [CrossRef] [Google Scholar]
  17. Zhang, L., Yang, F., Zhang, Y.D., and Zhu, Y.J., (2016) Road crack detection using deep convolutional neural network. Proc., Image Processing (ICIP), 2016 IEEE International Conference, 3708–3712. [CrossRef] [Google Scholar]
  18. Ouyang, W., and Xu, B., (2013). Pavement cracking measurements using 3D laser-scan images. Measurement Science and Technology, 24(10), 105204. [CrossRef] [Google Scholar]
  19. Laurent, J., Hébert, J.F., Lefebvre, D., and Savard, Y., (2012). Using 3D laser profiling sensors for the automated measurement of road surface conditions. Proc., 7th RILEM International Conference on Cracking in Pavements, Springer, 157–167. [CrossRef] [Google Scholar]
  20. Chen, F., Yu, H., Hu, R., and Zeng, X., (2013). Deep learning shape priors for object segmentation. Proc., Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1870–1877. [Google Scholar]
  21. Olshausen, B.A., and Field, D.J., (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1?. Vision research, 37(23), 3311–3325. [CrossRef] [Google Scholar]
  22. Yang, J., Yu, K., Gong, Y., and Huang, T. (2009). Linear spatial pyramid matching using sparse coding for image classification. Proc., Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference, 1794–1801. [Google Scholar]
  23. Liu, H., Liu, C., and Huang, Y., (2011). Adaptive feature extraction using sparse coding for machinery fault diagnosis. Mechanical Systems and Signal Processing, 25(2), 558–574. [CrossRef] [Google Scholar]
  24. Sivaram, G. S., Nemala, S. K., Elhilali, M., Tran, T. D., and Hermansky, H., (2010). Sparse coding for speech recognition. Proc., Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference, 4346–4349. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.