Open Access
MATEC Web Conf.
Volume 271, 2019
2019 Tran-SET Annual Conference
Article Number 07004
Number of page(s) 7
Section Portland Cement Materials
Published online 09 April 2019
  1. TRB. (2007). Guidelines for the Selection of Snow and Ice Control Materials to Mitigate Environmental Impacts. Washington, D.C.: NCHRP Report 577. [Google Scholar]
  2. Xianming, S., Fay, L., Peterson, M.M., and Yang, Z. (2010). Freeze–thaw Damage and Chemical Change of a Portland Cement Concrete in the Presence of Diluted Deicers. Materials and Structures. 43(7). Springer Netherlands, 933–946. [CrossRef] [Google Scholar]
  3. Chunyu, Q., Suraneni, P., and Weiss, J. (2018). Damage in Cement Pastes Exposed to NaCl Solutions. Construction and Building Materials. [Google Scholar]
  4. Marchand, J., Sellevold, E.J., and Pigeon, M. (1994). The Deicer Salt Scaling Deterioration of Concrete An Overview. In Third International Conference on Durability of Concrete, edited by V. M. Malhotra, 1–46. Nice, France. [Google Scholar]
  5. Farnam, Y., Wiese, A., Bentz, D., Davis, J., and Weiss, J. (2015). Damage Development in Cementitious Materials Exposed to Magnesium Chloride Deicing Salt. Construction and Building Materials 93:384–92. [Google Scholar]
  6. Farnam, Y., Bentz, D., Hampton, A., and Weiss, J.. (2014). Acoustic Emission and Low Temperature Calorimetry Study of Freeze and Thaw Behavior in Cementitious Materials Exposed to NaCl Salt. Transportation Research Board Record (Accepted), 1–18. [Google Scholar]
  7. Lawrence, S., Peterson, K., Touton, S., Van Dam, T., and Johnston, D. (2006). Petrographic Evidence of Calcium Oxychloride Formation in Mortars Exposed to Magnesium Chloride Solution. Cement and Concrete Research 36 (8):1533–41. [CrossRef] [Google Scholar]
  8. Althoey, F., Wisner, B., Kontsos, A., and Farnam, Y. (2018). Cementitious Materials Exposed to High Concentration of Sodium Chloride Solution: Formation of a Deleterious Chemical Phase Change. Construction and Building Materials 167. Elsevier Ltd: 543–52. [CrossRef] [Google Scholar]
  9. Shi, X., Fay, L., Peterson, M.M., Berry, M., and Mooney, M. (2011). A FESEM/EDX Investigation into How Continuous Deicer Exposure Affects the Chemistry of Portland Cement Concrete. Construction and Building Materials. 25(2):957–66. [CrossRef] [Google Scholar]
  10. Harris, D., Farnam, Y., Spragg, R., Imbrock, P., and Weiss, J. (2015). Early Detection of Joint Distress in Portland Cement Concrete Pavements. Purdue University. [Google Scholar]
  11. Jones, W., Imbrock, P., Farnam, Y., Sprio, J., Villani, C., Olek, J., and Weiss, W.J. (2013). An Overview of Joint Deterioration in Concrete Pavement: Mechanisms, Solution Properties, and Sealers. JTRP Affiliated Reports. [Google Scholar]
  12. Farnam, Y., Todak, H., Spragg, R., and Weiss, J. (2015). Electrical Response of Mortar with Different Degrees of Saturation and Deicing Salt Solutions during Freezing and Thawing. Cement & Concrete Composites 59 (March):49–59. [Google Scholar]
  13. Sutter, L., Peterson, K., Julio-Betancourt, G., Hooton, D., Dam, T., and Smith, K. (2008). The Deleterious Chemical Effects of Concentrated Deicing Solutions on Portland Cement Concrete. South Dakota Department of Transportation Office of Research 5 (April). Houghton, MI:216. Report SD2002-01-F. [Google Scholar]
  14. Peterson, K., Julio-Betancourt, G., Sutter, L., Hooton, D., and Johnston, D. (2013). Observations of Chloride Ingress and Calcium Oxychloride Formation in Laboratory Concrete and Mortar at 5 C. Cement and Concrete Research. 45(1):79–90. [CrossRef] [Google Scholar]
  15. Suraneni, P., Azad, V., Burkan, I., and Weiss, J. (2017). Use of Fly Ash to Minimize Deicing Salt Damage in Concrete Pavements. Article in Transportation Research Record Journal of the Transportation Research Board Transportation Research Record Journal of the Transportation Research Board, no. 2629:24–32. [Google Scholar]
  16. Farnam, Y., Zhang, B., and Weiss, J. (2017). Evaluating the Use of Supplementary Cementitious Materials to Mitigate Damage in Cementitious Materials Exposed to Calcium Chloride Deicing Salt. Cement and Concrete Composites 81:77–86. [CrossRef] [Google Scholar]
  17. Whatley, S.N., Suraneni, P., Azad, V.J., Isgor, O.B., and Weiss, J. (2017). Mitigation of Calcium Oxychloride Formation in Cement Pastes Using Undensified Silica Fume. Journal of Materials in Civil Engineering. [Google Scholar]
  18. Suraneni, P., Monical, J., Unal, E., Farnam, Y., and Weiss, J. (2017). Calcium Oxychloride Formation Potential in Cementitious Pastes Exposed to Blends of Deicing Salt. ACI Materials Journal. 114(4):631–41. [CrossRef] [Google Scholar]
  19. Thomas, M.D.A., Hooton, R.D., Scott, A., and Zibara, H. (2012). The Effect of Supplementary Cementitious Materials on Chloride Binding in Hardened Cement Paste. Cement and Concrete Research. [Google Scholar]
  20. Weiss, W.J., Suraneni, P., Azad, V.J., and Isgor, O.B. (2016). Calcium Oxychloride Formation in Pastes Containing Supplementary Cementitious Materials: Thoughts on the Role of Cement and Supple-Mentary Cementitious Materials Reactivity. RILEM Technical Letters. 1(0):24. [Google Scholar]
  21. Monical, J., Unal, E., Barrett, T., Farnam, Y., and Weiss, W.J. (2016). Reducing Joint Damage in Concrete Pavements. Transportation Research Record: Journal of the Transportation Research Board 2577 (January). Transportation Research Board of the National Academies:17–24. [Google Scholar]
  22. Farnam, Y., Dick, S., Wiese, A., Davis, J., Bentz, D., and Weiss, J. (2015). The Influence of Calcium Chloride Deicing Salt on Phase Changes and Damage Development in Cementitious Materials. Cement & Concrete Composites 64:1–15. [CrossRef] [Google Scholar]
  23. Monical, J., Villani, C., Farnam, Y., Unal, E., and Weiss, W.J. (2016). Using Low-Temperature Differential Scanning Calorimetry to Quantify Calcium Oxychloride Formation for Cementitious Materials in the Presence of Calcium Chloride. Advances in Civil Engineering Materials 5(2):20150024. [CrossRef] [Google Scholar]
  24. Han, B., Choi, J.H., Dantzig, J., and Bischof, J.C. (2006). A Quantitative Analysis on Latent Heat of an Aqueous Binary Mixture. Cryobiology. 52(1):146–151. [CrossRef] [Google Scholar]
  25. Langan, B.W., Weng, K., and Ward, M.A. (2002). Effect of Silica Fume and Fly Ash on Heat of Hydration of Portland Cement. Cement and Concrete Research. [Google Scholar]
  26. M. Balapour, A. Joshaghani, F. Althoey, Nano-SiO2 contribution to mechanical, durability, fresh and microstructural characteristics of concrete: A review, Constr. Build. Mater. 181 (2018). doi:10.1016/j.conbuildmat.2018.05.266. [Google Scholar]
  27. Cheng-yi, H., and Feldman, R.F. (1985). Hydration Reactions in Portland Cement-Silica Fume Blends. Cement and Concrete Research. [Google Scholar]
  28. Roy, D., Skalny, J., and Diamond, S. (1982). Effects of Blending Materials on the Rheology of Cement Pastes and Concretes. In Symposium M, Concrete Rheology, Materials Research Society, 152–73. PA. [Google Scholar]
  29. McCarthy, G.J., and Thedchanamoorthy, A. (1988). Semi-Quantitative X-Ray Diffraction Analysis of Fly Ash by the Reference Intensity Ratio Method. MRS Proceedings 136 (January). Cambridge University Press:67. [Google Scholar]
  30. McCarthy, G.J., Swanson, K.D., Keller, L.P., and Blatter, W.C. (1984). Mineralogy of Western Fly Ash. Cement and Concrete Research. 14(4). Pergamon:471–78. [CrossRef] [Google Scholar]
  31. Roy, D.M., Luke, K., and Diamond, S. (1984). Characterization of Fly Ash and Its Reactions in Concrete. MRS Proceedings 43 (January). Cambridge University Press:3. [Google Scholar]
  32. Diamond, S. (1983). On The Glass Present In Low-Calcium And In High-Calcium Flyashes. CEMENT and CONCRETE RESEARCH. 13:459–464. [Google Scholar]
  33. Tishmack, J.K., Olek, J., and Diamond, S. (1999). Characterization of High-Calcium Fly Ashes and Their Potential Influence on Ettringite Formation in Cementitious Systems. Cement, Concrete and Aggregates. 21(1):82. [Google Scholar]
  34. Gebler, S.H., and Klieger, P. (1986). Effect of Fly Ash on Physical Properties of Concrete. Special Publication. 91(February):1–50. [Google Scholar]
  35. Johnston, C. (1994). Deicer Salt Scaling Resistance and Chloride Permeability. Concrete International. 16(8):48–55. [Google Scholar]
  36. Bortz, B.S. (2010). Salt-Scaling Durability of Fly Ash Concrete. Kansas State University. [Google Scholar]
  37. Valenza, J.J., and Scherer, G.W. (2006). Mechanism for Salt Scaling. Journal of the American Ceramic Society. 89(4):1161–79. [CrossRef] [Google Scholar]
  38. Dean, S.W., Naik, T.R., Kraus, R.N., Ramme, B.W., and Y-M Chun. (2005). Decing Salt-Scaling Resistance: Laboratory and Field Evaluation of Concrete Containing up to 70 % Class C and Class F Fly Ash. Journal of ASTM International. 2(7):11912. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.