Open Access
MATEC Web Conf.
Volume 268, 2019
The 25th Regional Symposium on Chemical Engineering (RSCE 2018)
Article Number 06005
Number of page(s) 6
Section Process for Energy and Environment
Published online 20 February 2019
  1. Available online at [Google Scholar]
  2. Available online at [Google Scholar]
  3. Moore, M., Locke, M. A., Jenkins, M., Steinriede, R. W., & McChesney, D.S. Dredging effects on selected nutrient concentrations and ecoenzymatic activity in two drainage ditch sediments in the lower Mississippi River Valley. International Soil and Water Conservation Research 5(3), 2017 ,190–195. [CrossRef] [Google Scholar]
  4. Putra, R. S., Novarita, D., & Cahyana, F. Remediation of lead (Pb) and copper (Cu) using water hyacinth [Eichornia crassipes (Mart.) Solms] with electro-assisted phytoremediation (EAPR). Proceedings 4th International Conference on Biological Science, 2015, pp. 020052(1-6). [Google Scholar]
  5. Vasudevan, S., Lakshmi, J., & Sozhan, G. Electrocoagulation studies on the removal of copper from water using mild steel electrode, Water Environment Research 84(3), 2012, 209–219. [CrossRef] [Google Scholar]
  6. Sarkar, M., Rahman, A., & Bhoumik, N. Remediation of chromium and copper on water hyacinth (E. crassipes) shoot powder, Water Resources and Industry 17, 2017, 1–6. [CrossRef] [Google Scholar]
  7. Available online at knowledge/library/phytoremediation-17359669 [Google Scholar]
  8. Cristaldi, A., Conti, G. O., Jho, E. H., Zuccarello, P., Grasso, A., Copat, C., & Ferrante, M. Phytoremediation of contaminated soils by heavy metals and PAHs: A brief review, Environmental Technology & Innovation 8, 2017, 309–326. [CrossRef] [Google Scholar]
  9. Cluis, C. Junk-greedy greens: Phytoremediation as a new option for soil decontamination. BioTeach Journal 2, 2005, 61–67. [Google Scholar]
  10. Available online at [Google Scholar]
  11. Available online at [Google Scholar]
  12. Available online at contamination-meycauayan-river [Google Scholar]
  13. Available at ms_and_human_Health.pdf [Google Scholar]
  14. Available online at [Google Scholar]
  15. Available online at [Google Scholar]
  16. Chen, J., Shafi, M., Li, S., Wang, Y., Wu, J., Ye, Z., Liu, D. Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens), Scientific Reports 5, 2015, 13554. [CrossRef] [Google Scholar]
  17. Ginocchio, R., Rodríguez, P. H., Badilla-Ohlbaum, R., Allen, H. E., & Lagos, G.E. Effect of soil copper content and pH on copper uptake of selected vegetables grown under controlled conditions, Environmental Toxicology and Chemistry 21(8), 2002, 1736–1744. [CrossRef] [Google Scholar]
  18. Willscher, S., Jablonski, L., Fona, Z., Rahmi, R., & Wittig, J. Phytoremediation experiments with Helianthus tuberosus under different pH and heavy metal soil concentrations, Hydrometallurgy 168, 2017, 153–158. [CrossRef] [Google Scholar]
  19. Yruela, I. Copper in plants, Brazilian Journal of Plant Physiology 17(1), 2005, 145–156. [Google Scholar]
  20. Smith, K. S., Balistrieri, L. S., & Todd, A.S. Using biotic ligand models to predict metal toxicity in mineralized systems, Applied Geochemistry 57, 2015, 55–72. [CrossRef] [Google Scholar]
  21. Paquin, P. R., Gorsuch, J. W., Apte, S., Batley, G. E., Bowles, K. C., Campbell, P. G., … Wu, K.B. The biotic ligandmodel: A historical overview, Comparative Biochemistry and Physiology Part C, 3(35), 2002, 3–35. [Google Scholar]
  22. Xu, Q., Qiu, H., Chu, W., Fu, Y., Cai, S., Min, H., & Sha, S. Copper ultrastructural localization, subcellular distribution, and phytotoxicity in Hydrilla verticillata (L.f.) Royle, Environmental Science and Pollution Research 20(12), 2013, 8672–8679. [CrossRef] [Google Scholar]
  23. Li, P., Wang, X., Zhang, T., Zhou, D., & He, Y. Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil, Journal of Environmental Sciences 20(4), 2008, 449–455. [Google Scholar]
  24. Juang, K., Lee, Y., Lai, H., & Chen, B. Influence of magnesium on copper phytotoxicity to and accumulation and translocation in grapevines. Ecotoxicology and Environmental Safety 104, 2014, 36–42. [CrossRef] [Google Scholar]
  25. Markich, S., Batley, G., Stauber, J., Rogers, N., Apte, S., Hyne, R., Creighton, N. Hardness corrections for copper are inappropriate for protecting sensitive freshwater biota, Chemosphere, 60(1), 2005, 1–8. [CrossRef] [Google Scholar]
  26. Markich, S. J., King, A. R., & Wilson, S.P. Non-effect of water hardness on the accumulation and toxicity of copper in a freshwater macrophyte (Ceratophyllum demersum): How useful are hardness-modified copper guidelines for protecting freshwater biota? Chemosphere 65(10), 2006, 1791–1800. [Google Scholar]
  27. Ryan, B. M., Kirby, J. K., Degryse, F., Harris, H., McLaughlin, M. J., & Scheiderich, K. Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms, New Phytologist 199(2), 2013, 367–378. [CrossRef] [Google Scholar]
  28. Chigbo, C., Batty, L., & Bartlett, R. Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper–pyrene co-contaminated soil, Chemosphere 90(10), 2013, 2542–2548. [CrossRef] [Google Scholar]
  29. Garcıa, G., Faz, Á., & Cunha, M. Performance of ́Piptatherum miliaceum (Smilo grass) in edaphic Pb and Zn phytoremediation over a short growth period, International Biodeterioration & Biodegradation 54(2-3), 2004, 245–250. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.