Open Access
Issue
MATEC Web Conf.
Volume 268, 2019
The 25th Regional Symposium on Chemical Engineering (RSCE 2018)
Article Number 04007
Number of page(s) 5
Section Materials and Processing
DOI https://doi.org/10.1051/matecconf/201926804007
Published online 20 February 2019
  1. World Rice Statistics Online Query Facility. Available online: http://ricestat.irri.org:8080/wrsv3/entrypoint.htm (accessed on 18 July 2018). [Google Scholar]
  2. Kalaw, M.,Culaba, A.,Hinode, H.,Kurniawan, W., Gallardo, S., & Promentilla, M. (2016). Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash. Materials,9(7), 580. doi:10.3390/ma9070580 [CrossRef] [Google Scholar]
  3. Khan, Rawid &Jabbar, Abdul &Ahmad, Irshad &Khan, Wajid &Khan, Akhtar &Mirza, Jahangir. (2012). Reduction in environmental problems using rice-husk ash in concrete. Construction and Building Materials. 30. 360–365. 10.1016/j.conbuildmat.2011.11.028. [CrossRef] [Google Scholar]
  4. Gibbs, M. J.,Soyka, P., &Conneely, D. (n.d.). CO2 Emissions from cement production. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Retrieved August 16, 2018, from https://www.ipccnggip.iges.or.jp/public/gp/bgp/3_1_Cement_Production.pdf. [Google Scholar]
  5. Swaminathen A.N., andS. R. Ravi (2016), “Use of Rice Husk Ash and Metakaolin as Pozzolonas for Concrete: A Review”, International Journal of Applied Engineering Research, Vol. 11, Issue 1 (2016) pp 656–664. [Google Scholar]
  6. Barbosa, V. F., &Mackenzie, K.J. (2003). Synthesis and thermal behaviour of potassium sialate geopolymers. Materials Letters,57(9-10), 1477–1482. doi:10.1016/s0167-577x(02)010091 [CrossRef] [Google Scholar]
  7. Khan, R.,Jabbar, A.,Ahmad, I.,Khan, W.,Khan, A. N., &Mirza, J. (2012). Reduction in environmental problems using rice-husk ash in concrete. Construction and Building Materials,30, 360–365. doi:10.1016/j.conbuildmat.2011.11.028 [CrossRef] [Google Scholar]
  8. B., & M.c., P. (2012). Effect of Replacement of Cement by Metakalion on the Properties of High Performance Concrete Subjected to Acid Attack. I-managers Journal on Civil Engineering,2(3), 14–21. doi:10.26634/jce.2.3.1934 [Google Scholar]
  9. Bakharev, T. (2005). Resistance of geopolymer materials to acid attack. Cement and Concrete Research,35(4), 658–670. doi:10.1016/j.cemconres.2004.06.005 [CrossRef] [Google Scholar]
  10. Barbosa, V. F., &Mackenzie, K.J. (2003). Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Materials Research Bulletin,38(2), 319–331. doi:10.1016/s0025-5408(02)01022-x [CrossRef] [Google Scholar]
  11. Ole, A.,Abrasaldo, P.M.B.,Castillon, G.,Ladines, A.,de los Reyes, R.,Santos, G.N.C., &Quiroga, R.V. Synthesis of TiO2 Nanomaterials by Modified Horizontal Vapor Phase Growth Technique. [Google Scholar]
  12. Zailan, S. N.,Mahmed, N.,Abdullah, M. M., &Sandu, A.V. (2016). Self-cleaning geopolymer concrete -A review. IOP Conference Series: Materials Science and Engineering,133, 012026. doi:10.1088/1757-899x/133/1/012026 [CrossRef] [Google Scholar]
  13. Ohtani, B.,Kakimoto, M.,Nishimoto, S., &Kagiya, T. (1993). Photocatalytic reaction of neat alcohols by metal-loaded titanium(IV) oxide particles. Journal of Photochemistry and Photobiology A: Chemistry,70(3), 265–272. doi:10.1016/1010-6030(93)85052-a [CrossRef] [Google Scholar]
  14. Quagliarini, E.,Bondioli, F.,Goffredo, G. B.,Cordoni, C., &Munafò, P. (2012). Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Construction and Building Materials, 37, 51–57. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.