Open Access
Issue
MATEC Web Conf.
Volume 268, 2019
The 25th Regional Symposium on Chemical Engineering (RSCE 2018)
Article Number 03002
Number of page(s) 4
Section Fundamentals of Chemical Engineering
DOI https://doi.org/10.1051/matecconf/201926803002
Published online 20 February 2019
  1. Q. D. Nguyen, T. K. P. Le, and T. A. T. Tran, A technique to smartly-reuse alkaline solution in lignocellulose pre-treatment, Chemical Engineering Transactions 63 (2018) 157–162. [Google Scholar]
  2. J. Sheehan, The road to bioethanol: a strategic perspective of the US Department of Energy’s national ethanol program, in “Glycosyl Hydrolases for Biomass Conversion” edited by M. Himmel, J. Baker, and J. Saddler, published in Washington DC by American Chemical Society (2001), 2–25. [Google Scholar]
  3. D. P. Koullas, P. Christakopoulos, D. Kekos, B.J. Macris, and E. G. Koukios, Correlating the effect of pretreatment on the enzymatic hydrolysis of straw, Biotechnol. Bioeng. 39 (1992) 113–l16. [CrossRef] [Google Scholar]
  4. J. Azuma, T. Asai, M. Isaka, and T. Koshijima, Effects of microwave irradiation on enzymatic susceptibility of crystalline cellulose, J. Ferment. Technol. 63 (1985) 529–536. [Google Scholar]
  5. L. P. Ramos, M.M. Nazhad, and J. N. Saddler, Effect of enzymatic hydrolysis on the morphology and fine structure of pretreated cellulosic residues, Enzyme Microb. Technol. 15 (1993) 821–831. [CrossRef] [Google Scholar]
  6. J. Szczodrak, Z. Ilczuk, J. Rogalski, and A. Leonowicz, Intensification of oak sawdust enzymatic hydrolysis by chemical or hydrothermal pretreatment, Biorechnol. Bioeng. 28 (1986) 504–510. [CrossRef] [Google Scholar]
  7. M. A. Farid, H.M. Shaker, and A. I. El-Diwany, Effect of peracetic acid, sodium hydroxide and phosphoric acid on cellulosic materials as a pretreatment for enzymatic hydrolysis. Enzyme Microb. Technol. 5 (1983) 421–424. [CrossRef] [Google Scholar]
  8. R. S. Bes, G. Gas, J. Molinier, P. Vidal, J. Mathieu, and J. C. Mora, Enhancement of poplar cellulose susceptibility to cellulase enzyme hydrolysis by ozonation, Ozone Science Eng. 11 (1989) 217–226. [CrossRef] [Google Scholar]
  9. C. Rolz, R. De Leon, M.C. De Arriola, and S. De Cabrera, Biodelignification of lemon grass and citronella bagasse by white-rot fungi, Appl. Environ. Microbial. 52 (1986) 607–611. [Google Scholar]
  10. M. Mes-Hartree, E.K.C. Yu, I.D. Reid, and J. N. Saddler, Suitability of aspenwood biologically delignified with Phlebia rremellosus for fermentation to ethanol or butanediol, Appl. Microbial. Biotechnol. 26 (1987) 120–125. [CrossRef] [Google Scholar]
  11. V. P. Puri and G. R. Pearce, Alkali-explosion pretreatment of straw and bagasse for enzymic hydrolysis, Biotechnol. Bioeng. 28 (1986) 480–485. [CrossRef] [Google Scholar]
  12. H. Bateni, K. Karimi, A. Zamani, F. Benakashani, Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective, Appl. Energy 136 (2014) 14–22. [CrossRef] [Google Scholar]
  13. A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker, Determination of Ash in biomass, National Renewable Energy Laboratory (NREL) Analytical Procedures, NREL/TP-510-42622 (2008). [Google Scholar]
  14. A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker, Determination of structural carbonhidrates and lignin in biomass, National Renewable Energy Laboratory (NREL) Analytical Procedures, NREL/TP-510-42618 (2008). [Google Scholar]
  15. F.J. VilesJr., and Leslie Silverman, Determination of Starch and Cellulose with Anthrone, in “Analytical Chemistry”, published in 1949, 950–953 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.