Open Access
MATEC Web Conf.
Volume 262, 2019
64 Scientific Conference of the Committee for Civil Engineering of the Polish Academy of Sciences and the Science Committee of the Polish Association of Civil Engineers (PZITB) (KRYNICA 2018)
Article Number 10002
Number of page(s) 6
Section Mechanics of Structures and Materials
Published online 30 January 2019
  1. H. O. Madsen, S. Krenk, N. C. Lind, Methods of Structural Safety, Prentice-Hall (1986) [Google Scholar]
  2. R. E. Melchers, Structural Reliability Analysis and Predictions, 2nd Ed., Wiley, (1999) [Google Scholar]
  3. O. Ditlevsen, H.O. Madsen, Structural Reliability Methods, Wiley, (1996) [Google Scholar]
  4. P. Thoft-Christensen, M. J. Baker, Structural Reliability. Theory and its Applications, Springer-Verlag, (1982) [CrossRef] [Google Scholar]
  5. G. Augusti, A. Baratta, F. Casciati, Probabilistic Methods in Structural Engineering, Chapman and Hall, (1984) [CrossRef] [Google Scholar]
  6. M.E. Harr, Reliability-Based Design in Civil Engineering, McGraw-Hill, (1987) [Google Scholar]
  7. A. S. Nowak, K. R. Collins, Reliability of structure, McGraw-Hill Higher Education, (2000) [Google Scholar]
  8. A. Dudzik, Reliability Assessment of Steel-Aluminium Lattice Tower, IOP Conference Series: Materials Science and Engineering, 245, 1–9 (2017) [Google Scholar]
  9. U. Radoń, Arch. Civ. Mech. Enge. 15 (1), 262–271 (2015) [CrossRef] [Google Scholar]
  10. A. Dudzik, U. Radoń, The reliability assessment for steel industrial building, Advances In Mechanics: Theoretical, Computational And Interdisciplinary Issues, 163–166 (2016) [CrossRef] [Google Scholar]
  11. A. Dudzik, U. Radoń, ACE, LXI (3), 133–147 (2015) [Google Scholar]
  12. K. Kubicka, U. Radoń, ACE, 4, 141–154 (2015) [Google Scholar]
  13. P. Obara, W. Gilewski, J. Kłosowska, Verification of Tensegrity Properties of Kono Structure and Blur Building, Xxv Polish Russian Slovak Seminar -Theoretical Foundation Of Civil Engineering, 153, 173–179 (2016) [Google Scholar]
  14. P. Obara, W. Gilewski, Bull. Pol. Acad. Sci.-Te., 64 (4), 739–750 (2016) [Google Scholar]
  15. M.F. Anjum, T. Imran, A.-S. Khaled, Eur. J. Oper. Res., 101, 65–73 (1997) [CrossRef] [Google Scholar]
  16. K. Hornik, M. Stinchcombe, H. White, Neural Networks 3, 551–560 (1990) [CrossRef] [Google Scholar]
  17. J.H.J. Garrett, J. Comput. Civil. Eng., ASCE 8 (2), 129–130 (1994) [CrossRef] [Google Scholar]
  18. T. Masters, Practical Neural Network Recipes in C++, Academic Press, San Diego (1993) [Google Scholar]
  19. T. Sasaki, A neural network-based response surface approach for computing failure probabilities, In: Corotis, R.B., Schueller, G.I., Shinozuka, M. (Eds.), 8th International Conference on Structural Safety and Reliability (ICOSSAR 2001), USA (2001) [Google Scholar]
  20. A.T.C. Goh, F.H. Kulhawy, Can. Geotech. J., 40 (6), 1235–1244 (2003) [CrossRef] [Google Scholar]
  21. J. Deng, D.S. Gu, X.B. Li, Z.Q. Yue, Struct. Saf. 25 (1), 25–48 (2005) [CrossRef] [Google Scholar]
  22. T. Most, Approximation of complex nonlinear functions by means of neural networks, 2nd Weimar Optimization and Stochastic Days (2005) [Google Scholar]
  23. Y. Tsompanakis, N. Lagaros, G. E. Stavroulaki, Efficient Neural Network Models for Structural Reliability Analysis and Identification Problems, The Eighth International Conference on the Application of Artificial Intelligence to Civil, Structural and Environmental Engineering (2005) [Google Scholar]
  24. M. Papadrakakis, V. Papadopoulos, N. Lagaros, Comput. Method. Appl. M., 136, 145–163 (1996) [CrossRef] [Google Scholar]
  25. E. Pabisek, J. Kaliszuk, Z. Waszczyszyn, Neural and finite element analysis of a plane steel frame reliability by the Classical Monte Carlo method. Artificial Intelligence and Soft Computing ICAISC 2004, 7th International Conference, Zakopane, 1081–1086 (2004) [Google Scholar]
  26. [Google Scholar]
  27. A.M. Hasofer, N.C. Lind, J. Eng. Mech. Div.-ASCE, 100, 111–121 (1974) [Google Scholar]
  28. D. T. Tracey, C. E. Freese, Comput. Struct., 13, 45–53 (1981) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.