Open Access
MATEC Web Conf.
Volume 259, 2019
2018 6th International Conference on Traffic and Logistic Engineering (ICTLE 2018)
Article Number 02002
Number of page(s) 7
Section Intelligent Transportation and Management
Published online 25 January 2019
  1. A. Geiger, P. Lenz, C. Stiller, R. Urtasun. Vision meets robotics: The KITTI dataset. International Journal of Robotics Research, 32(11), 1231–1237 (2013) [CrossRef] [Google Scholar]
  2. J. Ziegler, P. Bender, M. Schreiber, et al. Making Bertha Drive - An Autonomous Journey on a Historic Route. IEEE Intell. Transport. Syst. Mag., 6(2), 8–20 (2014) [CrossRef] [Google Scholar]
  3. A. Rangesh, K. Yuen, R. K. Satzoda, et al. A Multimodal, Full-Surround Vehicular Testbed for Naturalistic Studies and Benchmarking: Design, Calibration and Deployment. arXiv preprint arXiv: 1709.07502. (2017) [Google Scholar]
  4. B. Romera-Paredes, P. H. S. Torr. Recurrent Instance Segmentation. European Conference on Computer Vision, Springer, Cham, 312–329 (2016) [Google Scholar]
  5. C. Stiller, F. P. León, M. Kruse. Information fusion for automotive applications - An overview. Information Fusion, 12(4), 244–252 (2011) [CrossRef] [Google Scholar]
  6. J. Suh, H. Chae, K. Yi. Stochastic Model Predictive Control for Lane Change Decision of Automated Driving Vehicles. IEEE Transactions on Vehicular Technology, 67(6), 4711 (2018) [Google Scholar]
  7. D. Silver, J. A. Bagnell, A. Stentz, Learning Autonomous Driving Styles and Maneuvers from Expert Demonstration. Experimental Robotics, Springer, Heidelberg, 371–386 (2013) [CrossRef] [Google Scholar]
  8. M. Quigley, K. Conley, B. Gerkey, et al. ROS: An open-source Robot Operating System. ICRA workshop on open source software, 3(3.2), 5 (2009) [Google Scholar]
  9. M. Vel’as, M. Španěl, Z. Materna, et al. Calibration of RGB Camera with Velodyne LiDAR. In Proc. Conference on Computer Graphics, Visualization and Computer Vision (2014) [Google Scholar]
  10. A. Geiger, P. Lenz, R. Urtasun. Are we ready for autonomous driving? The KITTI vision benchmark suite. IEEE Conference on CVPR, 3354–3361 (2012) [Google Scholar]
  11. W. Maddern, G. Pascoe, C. Linegar, et al. 1 year, 1000 km: The Oxford RobotCar dataset. The International Journal of Robotics Research, 36(1), 3–15 (2017) [CrossRef] [Google Scholar]
  12. M. Cordts, M. Omran, S. Ramos, et al. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 3213–3223 (2016) [Google Scholar]
  13. E. Santana, G. Hotz. Learning a Driving Simulator. arXiv preprint arXiv: 1608.01230 (2016). [Google Scholar]
  14. X. Li, F. Flohr, Y. Yang, et al. 2016. A new benchmark for vision-based cyclist detection. In Proc. Intelligent Vehicles Symposium, 1028–1033 (2016) [Google Scholar]
  15. V. Badrinarayanan, A. Kendall, R. Cipolla. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. on PAMI, 39(12), 2481–2495 (2017) [Google Scholar]
  16. Y. Chen, X. Yang, B. Zhong, et al. CNNTracker: Online Discriminative Object Tracking via Deep Convolutional Neural Network. Applied Soft Computing, 38, 1088–1098 (2016) [CrossRef] [Google Scholar]
  17. R. Quintero, I. Parra, D. F. Llorca, et al. Pedestrian Intention and Pose Prediction through Dynamical Models and Behaviour Classification. In Intelligent Transportation Systems (ITSC), IEEE 18th International Conference on, 83–88 (2015) [Google Scholar]
  18. D. Dominic, S. Chhawri, R. M. Eustice, D. Ma. Risk Assessment for Cooperative Automated Driving. In Proc. 2nd ACM Workshop on Cyber-Physical Systems Security and Privacy ACM, 47–58 (2016) [CrossRef] [Google Scholar]
  19. R. Song, H. Chen, X. Xiao, et al. Lane Detection Algorithm Based on Geometric Moment Sampling. Scientia Sinica, 47(4), 455–467 (2017) [Google Scholar]
  20. S. Mecheri, F. Rosey, R. Lobjois. The effects of lane width, shoulder width, and road cross-sectional reallocation on drivers’ behavioral adaptations. Accident Analysis & Prevention, 104, 65–73 (2017) [CrossRef] [Google Scholar]
  21. A. Tordeux, S. Lassarre, M. Roussignol. An adaptive time gap car-following model. Transportation Research Part B Methodological, 44(8), 1115–1131 (2010) [CrossRef] [Google Scholar]
  22. D. Gaither, H. Do, B. R. Bryant. Toward Detection of Abnormal Behaviors in Timing and Security Requirements. In Proc. 24th Asia-Pacific Software Engineering Conference Society (APSEC), IEEE, 707–712 (2017) [Google Scholar]
  23. K. C. Dey, L. Yan, X. Wang, et al. 2016. A Review of Communication, Driver Characteristics, and Controls Aspects of Cooperative Adaptive Cruise Control (CACC). IEEE Intell. Transport. Syst. Mag., 17(2), 491–509 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.