Open Access
MATEC Web Conf.
Volume 258, 2019
International Conference on Sustainable Civil Engineering Structures and Construction Materials (SCESCM 2018)
Article Number 05002
Number of page(s) 6
Section Structural Dynamics and Earthquake Engineering, Structures in Severe Environment, Structural Analysis
Published online 25 January 2019
  1. T. Boen, Challenges and Potentials of Retrofitting Masonry Non-Engineered Construction in Indonesia, Kyoto University, Kyoto Japan, (2014) [Google Scholar]
  2. D. Sadek and M. El-Attar, Structural Behavior of Rubberized Masonry Walls, J. of Clr. Prod. 89, 174–186. (2015) [CrossRef] [Google Scholar]
  3. I. Satyarno, Pengaruh Penggunaan Serutan Karet Ban Bekas untuk Campuran Beton (in Bahasa), Med. Tek. XXVIII, 4, 45–51 (2006) [Google Scholar]
  4. Z. Boudaoud and M. Beddar, Effects of Recycled Tires Rubber Aggregates on the Characteristics of Cement Concrete, OJ. of Civ. Eng.-Sci. Resch, 2, 193–197 (2012) [Google Scholar]
  5. N. Oikonomou and S. Mavridou, The Use of Waste Tyre Rubber in Civil Engineering Works, in Sustainability of construction materials, Greece, 213–238 (2009) [CrossRef] [Google Scholar]
  6. O. Youssf, M. A. ElGawady and J. E. Mills, Experimental Investigation of Crumb Rubber Concrete Columns under Seismic Loading, J. Struct. 15 (2015) [Google Scholar]
  7. L. Zheng, X. Huo and Y. Yuan, Experimental Investigation on Dynamic Properties of Rubberized Concrete, Constr. & Build. Matrls, 22, 939–947 (2008) [CrossRef] [Google Scholar]
  8. R. Siddique and T. Naik, Properties of Concrete Containing Scrap - Tire Rubber - an Overview, Wast. Manag. 24, 563–569 (2004) [Google Scholar]
  9. A. Yilmaz and N. Degirmenci, Possibility of Using Waste Tire Rubber and Fly Ash with Portland Cement as Construction Materials, J. Wast. Manag. 29, 1541–1546 (2009) [CrossRef] [Google Scholar]
  10. M. Batayneh, I. Marie and I. Asi, Promoting the Use of Crumb Rubber Concrete in Developing Countries, J. Wast. Manag., 28, 2171–2176 (2008) [CrossRef] [Google Scholar]
  11. ASTM International, ASTM C230/C230M-08: Standard Specification for Flow Table for Use in Tests of Hydraulic Cement, United States (2008) [Google Scholar]
  12. ASTM International, ASTM C109/C 109M-07: Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), United States (2007) [Google Scholar]
  13. ASTM International, ASTM C190-85: Method of Test for Tensile Strength of Hydraulic Cement Mortars, United States (1985) [Google Scholar]
  14. Badan Standardisasi Nasional (BSN), SNI 03-24612002: Spesifikasi Agregat Ringan untuk Beton Ringan Struktural (in Bahasa), Indonesia (2002) [Google Scholar]
  15. Wisnumurti, A. Soehardjono, and K. A. Palupi, Optimalisasi Penggunaan Komposisi Campuran Mortar terhadap Kuat Tekan Dinding Bata Merah (in Bahasa), J. Rek. Sip. (1) 1, 25–32 (2007) [Google Scholar]
  16. I. B. Topcu and A. Unverdi, Scrap Tires/Crumb Rubber, Waste and Supplementary Cementitious Materials in Concrete, Elsevier Ltd, 51–77 (2018) [CrossRef] [Google Scholar]
  17. L. Zheng, X. Huo, and Y. Yuan, Experimental Investigation on Dynamic Properties of Rubberized Concrete, J. Constr. And Build. Matrls., 22, 939–947 (2008) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.