Open Access
MATEC Web Conf.
Volume 255, 2019
Engineering Application of Artificial Intelligence Conference 2018 (EAAIC 2018)
Article Number 06003
Number of page(s) 7
Section Health Monitoring and Diagnosis
Published online 16 January 2019
  1. Abdullah, S. M., Yassin, I. M., Tahir, N. M. (2015). Comparison between PSO, NE, QR, SVD methods for Least Squares DC motor identification. IEEE, pp. 105–112. [Google Scholar]
  2. Ariffin, J., Kamal, N. A., Saa’sdon, M. N. T., Talib, S. A., Ghani, G. A., Zakaria, N. A., Yahaya, A. S. (2007). Sediment model for natural and man-made channels using general regression neural network. Journal - The Instituition of Engineer, Malaysia, 69 (3), pp. 44–58. [Google Scholar]
  3. Adnan, R., Samad, A. M., Zain, Z. M., Ruslan, F. A. (2012). 7 hours flood prediction modelling using NNARX structure: Case study Kedah. 2014 IEEE International Conference on Control System, Computing and Engineering, 28-30 November 2014, Penang, Malaysia. [Google Scholar]
  4. Aziz, K., Kader, F., Ahsan, A., and Rahman, A. (2015). Development and validation of artificial intelligence based regional flood estimation model for eastern Australia. 21st International Congress on Modelling and Simulation, Gold Coast, Australia. [Google Scholar]
  5. Besaw, L.E., Rizzo, D. M., Kline, M., Underwood, K.L., Doris, J.J., Morrisey, L.A., Pelletier, K. (2009). Stream classification using hierarchical artificial neural network: A Fluvial hazard management tool. Journal of Hydrology. 373 (2009) 34–43. [CrossRef] [Google Scholar]
  6. Chen, D., & Duan, J. G. (2006). Modeling width adjustment in meandering channels. Journal of Hydrology, 321(1-4), pp. 59–76. [CrossRef] [Google Scholar]
  7. Chen, Dong, & Tang, C. (2012). Evaluating secondary flows in the evolution of sine-generated meanders. Geomorphology, 163-164, pp. 37–44. [CrossRef] [Google Scholar]
  8. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd edition), New Jersey: Lawrence Erlbaum. [Google Scholar]
  9. Constantine, C. R., Dunne, T., & Hanson, G. J. (2009). Examining the physical meaning of the bank erosion coefficient used in meander migration modeling. Geomorphology, 106(3-4), pp. 242–252. [CrossRef] [Google Scholar]
  10. Duan, J G. (2008). Discussion of “Analytical Approach to Calculate Rate of Bank Erosion”, 131(11), pp. 281–282. [Google Scholar]
  11. Doris, J.J., Rizzo, D.M., Underwood, K.L. (2004). A watershed classification system using hierarchical artificial neural networks for diagnosing watershed impairment at multiple scales, ASCE, World Water and Environment Resources Congress. ASCE, Salt Lake City, UT. [Google Scholar]
  12. Duan, J. G, & College, C. (2002). The applications of the enhanced CCHE2D model to study the alluvial channel mi- gration processes les chenaux alluviaux, 39(5), pp. 469–480. [Google Scholar]
  13. Duan, J. G., & Julien, P. Y. (2005). Numerical simulation of the inception of channel meandering. Earth Surface Processes and Landforms, 30(9), pp. 1093–1110. [CrossRef] [Google Scholar]
  14. Duan, J. G., & Julien, P. Y. (2010). Numerical simulation of meandering evolution. Journal of Hydrology, 391(1-2), pp. 34–46. [CrossRef] [Google Scholar]
  15. Hasegawa, K. (1989). Universal Bank Erosion Coefficient for Meandering Rivers. Journal of Hydraulic Engineering., ASCE. Vol. 115. No. 6. pp. 744–765. [CrossRef] [Google Scholar]
  16. Ikeda, S., Parker, G., Sawai, K. (1981). Bend Theory of River Meanders; Part I, Linear Development. J. Fluid Mech. 112, pp. 363–377. [CrossRef] [Google Scholar]
  17. Johannesson, H., Parker, G. (1989). Velocity redistribution in meandering rivers. Journal of Hydraulic Engineering, 115 (8), pp. 1019–1039. [CrossRef] [Google Scholar]
  18. Kuehn, E. (2015). Streambank erosion trends and sediment contributions in a southwestern Missouri river, Master’s Thesis, Missouri State University. [Google Scholar]
  19. Kuntjuro., Bisri, M., Masrevaniah, A., Suharyanto, A. (2012). Empirical model of river meandering geometry changes due to discharge fluctuation, Journal of Basic Applied Sciences, 2 (2), pp 1027–1033. [Google Scholar]
  20. Park, N. (2007). A prediction of meander migration based on large scale flume test in clay, PhD. Thesis, Texas A&M University. [Google Scholar]
  21. Parker, C. (1982). Stability of the channel of Minnesota River near State Bridge No. 93, Minnesota. Project Report No. 205, St. Anthony Fall Hydraulic LAb. University of Minnesota, Minnepolis, pp. 33. [Google Scholar]
  22. Parker, C., Simon, A., & Thorne, C. R. (2008). The effects of variability in bank material properties on riverbank stability: Goodwin Creek, Mississippi. Geomorphology, 101(4), pp. 533–543. [CrossRef] [Google Scholar]
  23. Perruca, E., Camporeale, C., Ridolfi, L. (1997). Significance of the Riparian Vegetation Dynamics on Meandering River Morphodynamics. Water Resources Research 43. W03430. [Google Scholar]
  24. Posner, A. J., & Duan, J. G. (2012). Simulating river meandering processes using stochastic bank erosion coefficient. Geomorphology, 163-164, pp. 26–36. [CrossRef] [Google Scholar]
  25. Randle, T. J. (2006). Channel migration model for meandering rivers. Proceedings of the 8th Federal Interagency Sedimentation Conference, pp. 241–248. [Google Scholar]
  26. Rinaldi, M., Casagli, N., & Marta, Õ. S. (1999). Stability of streambanks formed in partially saturated soils and effects of negative pore water pressures?: the Sieve River ž Italy, pp. 253–277. [Google Scholar]
  27. Rinaldi, M., Casagli, N., Dapporto, S., Gargini, A. (2004). Monitoring and Modeling of Pore Water Pressure Changes and Riverbank Stability During Flow events. Earth Surface Processes and Landforms. 29 (2), pp.237–254. [CrossRef] [Google Scholar]
  28. Rinaldi, M., Mengoni, B., Luppi, L., Darby, S. E., & Mosselman, E. (2008). Numerical simulation of hydrodynamics and bank erosion in a river bend. Water Resources Research, 44(9). [Google Scholar]
  29. Saadon, A., Abdullah, J., Ariffin, J. (2014). River bank erosion studies: A review on advances and measurement techniques, International Postgraduate Seminar, UiTM, Malaysia. [Google Scholar]
  30. Saadon, A., Abdullah, J., Ariffin, J. (2016). Dimensional analysis relationships of streambank erosion rates, Jurnal Teknologi (Sciences and Engineering), 78:5-5(2016), pp. 79–85. [Google Scholar]
  31. Saadon, A., Abdullah, J., Ariffin, J. (2016). Streambank erosion prediction for natural river channels, International Journal of Applied Environmental Sciences, 11, 5, pp. 1273–1284. [Google Scholar]
  32. Shields, I. A. (1936). Application of similarity principles and turbulence research to bedload movement. In: Ott, W.P. van Uchelen, J.C., Hydrodynamics Laboratory Publication, 167, California Institute of Technology, Pasadena. [Google Scholar]
  33. Simon, A., Curini, A., Darby, S. E., & Langendoen, E. J. (2000). Bank and near-bank processes in an incised channel. Geomorphology, 35(3-4), pp. 193–217. [CrossRef] [Google Scholar]
  34. Thorne, C. (1982). Processes and Mechanisms of River Bank Erosion. Gravel-bed Rivers. J. Brian, R.D. Hey, and C. Thorne, eds., Wiley, Chichester. U.K., pp. 227–272. [Google Scholar]
  35. Toriman, M. E., Jaafar, O., Idris, M., Mastura, S. S. A., Juahir, H., Aziz, N. A., Kamarudin, K. A., Jamil, N. R. (2010). Study of water level-discharge relationship using artificial neural network (ANN) in Sg. Gumum, Tasik Chini Pahang, Malaysia. Research Journal of Applied Sciences 5 (1): 20–26. [CrossRef] [Google Scholar]
  36. Yeh, P.H. (2009). Channel migration in large-scale physical model study, PhD. Thesis, Texas A&M University. [Google Scholar]
  37. Yassin, I. M., Taib, M. N., Salleh, M. K., Hamzah, M. K. (2012). Effect of swarm size parameter on binary particle swarm optimization-based NARX structure selection. 2012 IEEE Symposium on Industrial Electronics and Application (ISIEA2012), 2012, pp. 219–223. [Google Scholar]
  38. Yassin, I. M., Taib, M. N., Adnan, R. (2013). Recent advancements and methodologies in system identification: A review, 1, 1, pp. 14–33. [Google Scholar]
  39. Yassin, I. M. (2014). Nonlinear autoregressive model structure selection using binary particle swarm optimization algorithm, Phd. Thesis, Universiti Teknologi MARA. [Google Scholar]
  40. Zarrati, A. R., Tamai, N., & Jin, Y. C. (2005). Bank erosion with a Generalized Depth Averaged Model, 131(6), pp. 467–475. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.